
Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #14

Event Filtering

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 5.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2017 Mark Claypool and WPI. All rights reserved.

4.17. End Game (optional) 208

4.17 End Game (optional)

Up to this point, Dragonfly is a fairly full-featured, completely functional game engine. A
few potential enhancements remain, however, that bring in elements common to many game
engines and improve performance, appearance and functionality.

4.17.1 Scene Graphs (optional)

Scene graphs are data structures that arrange elements of a graphics scene in order to
provide more efficient rendering. For example, when drawing objects in a 3d scene, a scene
graph might arrange the objects based on distance from the camera. Rendering the frame
then draws the objects that are farthest away from the camera first, proceeding to the
objects that are closest to the camera since the closer objects may occlude those behind.

Consider Dragonfly, where Objects have altitude (see Section 4.8.5 on page 115). Ob-
jects that are at lower altitude are drawn first before Objects at higher altitude, allowing
the higher altitude to be layered “on top” of the lower ones, as necessary. Without a scene
graph, Dragonfly implements altitude by iterating through all the Objects for each altitude
implementation, as in Listing 4.81 on page 115 – effectively, doing n× MAX ALTITUDE com-
parisons, where n is the number of Objects in the game world. With a scene graph, the
objects can be arranged by altitude, making the WorldManager draw() method only go
through the list of Objects once, so only doing n comparisons.

For a game engine, a scene graph often arranges objects for more efficient queries,
also. Objects that are not solid do not cause collisions. Without any other organization,
detecting whether a moving object collides with any other object must look through all
objects, regardless of whether they are solid or not. Thus far, Dragonfly is implemented
this way, too, as in Listing 4.102 (page 138), iterating through all Objects, checking for
collision with every Object, even the non-solid ones. Other common organizations group
Objects by location in the game world, allowing selection and iteration over only those
Objects at or near a specific location.

Since a scene graph organizes Objects, whether for drawing or query efficiency, it is
naturally part of the world manager. In fact, an easy way of viewing a scene graph is that
it replaces a simple list of game Objects with a more complex data structure where the
Objects are organized and indexed in different ways. In Dragonfly, this means replacing
ObjectList updates on line 10 of Listing 4.54 (page 94) with SceneGraph scene graph.

The header file for SceneGraph is shown in Listing 4.189. SceneGraph needs to #include
both Object.h and ObjectList.h. The definition of MAX ALTITUDE on line 3 has been
moved from WorldManager.h to SceneGraph.h.

To support efficient queries by the WorldManager (e.g., to provide a list of all the solid
objects), starting at line 8, the SceneGraph defines three lists of Objects. The first, objects,
is a list of all the Objects in the game – formerly, this was updates in the WorldManager.
The second, solid objects, is a list of just the solid Objects in the game. The third,
visible objects, is an array of ObjectLists, with each element being a list of Objects
at that altitude. Methods to add and remove objects to the scene graph are provided by
insertObject() and removeObject(), respectively.

To support queries that may be made by the WorldManager (or even the game program-

4.17. End Game (optional) 209

mer), SceneGraph includes methods: activeObjects(), which returns all active Objects;
inactiveObjects(), which returns all inactive Objects; solidObjects(), which returns
all solid Objects; and visibleObjects(), which returns all visible Objects at a given al-
titude. The methods all return an empty ObjectList if there are no Objects matching the
query. The method updateAltitude() is invoked when an Object re-positions itself to a
new altitude and the method updateSolidness() is invoked when an Object updates its
solidness.

Listing 4.189: SceneGraph.h
✞ ☎

0 #include ” Ob jec t . h”

1 #include ” O b j e c t L i s t . h”

2

3 const int MAX_ALTITUDE = 4;

4

5 class SceneGraph {

6

7 private:

8 ObjectList m_objects ; // A l l o b j e c t s
9 ObjectList m_solid_objects ; // So l i d o b j e c t s .

10 ObjectList m_visible_objects [MAX_ALTITUDE +1]; // V i s i b l e o b j e c t s .
11

12 public:

13 SceneGraph ();

14 ~SceneGraph ();

15

16 // I n s e r t Ob j ec t i n t o SceneGraph .
17 int insertObject (Object *p_o);

18

19 // Remove Obj ec t from SceneGraph .
20 int removeObject (Object *p_o);

21

22 // Return a l l a c t i v e Ob j e c t s . Empty l i s t i f none .
23 ObjectList activeObjects () const;

24

25 // Return a l l a c t i v e , s o l i d Ob j e c t s . Empty l i s t i f none .
26 ObjectList solidObjects () const;

27

28 // Return a l l a c t i v e , v i s i b l e Ob j e c t s a t a l t i t u d e . Empty l i s t i f none .
29 ObjectList visibleObjects (int altitude) const;

30

31 // Return a l l i n a c t i v e Ob j e c t s . Empty l i s t i f none .
32 ObjectList inactiveObjects () const;

33

34 // Re−p o s i t i o n Obj ec t in SceneGraph to new a l t i t u d e .
35 // Return 0 i f ok , e l s e −1.
36 int updateAltitude (Object *p_o , int new_alt);

37

38 // Re−p o s i t i o n Obj ec t in SceneGraph to new s o l i d n e s s .
39 // Return 0 i f ok , e l s e −1.
40 int updateSolidness (Object *p_o , Solidness new_solidness);

41

42 // Re−p o s i t i o n Obj ec t in SceneGraph to new v i s i b i l i t y .
43 // Return 0 i f ok , e l s e −1.
44 int updateVisible (Object *p_vo , bool new_visible);

4.17. End Game (optional) 210

45

46 // Re−p o s i t i o n Obj ec t in SceneGraph to new a c t i v e n e s s .
47 // Return 0 i f ok , e l s e −1.
48 int updateActive (Object *p_o , bool new_active);

49 };
✝ ✆

Implementation of SceneGraph insertObject() is shown in Listing 4.190. The method
first inserts the Object into the objects list, since that is the “master” list that contains
all Objects. Then, if the Object is solid, it is added to the solid objects list. Next, the
Object’s altitude is checked – if it is not in range (calling valueInRange(altitude, 0,

MAX ALTITUDE), see line 1 in Listing 4.135 on page 164), it returns an error (-1). Otherwise,
the object is inserted into the visible objects list at the correct altitude. Note, the
calls to ObjectList::insert() need to be error checked. If they encounter an error, an
appropriate message should be written to the logfile and insertObject() should return -1.

While it may seem that keeping 3 object lists is inefficient, remember that game objects
are stored as pointers to Objects, thus manipulating and copying such lists is not actually
doing the much more expensive operation of copying the memory space for each Object. As
a refresher, see Section 4.5.2 on page 4.5.2 for details on the ObjectList implementation.

Listing 4.190: SceneGraph insertObject()
✞ ☎

0 // I n s e r t Ob j ec t i n t o SceneGraph .
1 int SceneGraph :: insertObject (Object *p_o)

2

3 // Add o b j e c t to l i s t .
4 insert p_o into objects list

5

6 // I f s o l i d , add to s o l i d o b j e c t s l i s t .
7 if p_o -> isSolid () then

8 insert p_o into solid_objects list

9 end if

10

11 // Check a l t i t u d e .
12 if not valueInRange (p_o -> getAltitude (), 0, MAX_ALTITUDE) then

13 return error

14 end if

15

16 // Add to v i s i b l e o b j e c t s a t r i g h t a l t i t u d e .
17 insert p_o into visible_objects [p_o -> getAltitude ()] list
✝ ✆

Implementation of the SceneGraph removeObject() is basically the “undo” of the
insertObject() method, as shown in Listing 4.191. The indicated Object (p o) is re-
moved from the objects, solid objects and visible objects lists. As always, the calls
to ObjectList::remove() need to be error checked, writing an appropriate message to the
logfile and returning -1 on encountering an error.

Listing 4.191: SceneGraph removeObject()
✞ ☎

0 // Remove o b j e c t from SceneGraph .
1 int SceneGraph :: removeObject (Object *p_o)

2

3 remove p_o from objects list

4

4.17. End Game (optional) 211

5 if p_o is solid then

6 remove p_o from solid_objects list

7 end if

8

9 remove p_o from visible_objects [p_o -> getAltitude ()] list
✝ ✆

The methods allObjects() and solidObjects() just return objects and solid -

objects, respectively. visibleObjects() first checks that the parameter altitude is in
range (calling valueInRange(altitude, 0, MAX ALTITUDE), see line 1 in Listing 4.135 on
page 164), then returns visible objects[altitude].

Objects may change their attributes, such as a SPECTRAL Object becoming SOFT or an
Object changing altitude from 3 to 4. All such changes need to modify the contents of
the SceneGraph lists, solid objects and visible objects[], respectively. Listing 4.192
shows the implementation for updating the solidness of an Object. The first block of code
checks if the Object is solid and, if so, removes it from the solid objects list. The second
block of code checks if the new solidness value for the Object is solid (HARD or SOFT) and,
if so, inserts it into the solid objects list. Error checking on the ObjectList::insert()
calls is needed, as usual. Note, the solidness attribute for the Object is not changed – that
is a private value for Object and is done in the Object setSolidness() method.

Listing 4.192: SceneGraph updateSolidness()
✞ ☎

0 // Re−p o s i t i o n Obj ec t in SceneGraph to new s o l i d n e s s .
1 // Return 0 i f ok , e l s e −1.
2 int SceneGraph :: updateSolidness (Object *p_o , Solidness new_solidness)

3

4 // I f was s o l i d , remove from s o l i d o b j e c t s l i s t .
5 if p_o ->isSolid () then

6 remove p_o from solid_objects list

7 end if

8

9 // I f i s s o l i d , add to l i s t .
10 if new_solidness is HARD or new_solidness is SOFT then

11 insert p_o into solid_objects list

12 end if
✝ ✆

Listing 4.193 shows the implementation for updating the altitude of an Object. First,
the altitude values for both the new and old altitudes are checked for validity. It may seem
odd to check the old value, since it seems it must be right, but it could have been corrupted
someplace – if it was, trying to remove the object from the visible objects[] list at the
altitude may result in a crash. If both old and new are in the valid range, the object is first
removed from visible objects[] at the old altitude, then added to visible objects[]

at the new altitude. Error checking on the ObjectList::insert() calls are needed, as
usual.

Listing 4.193: SceneGraph updateAltitude()
✞ ☎

0 // Re−p o s i t i o n o b j e c t in scene graph to new a l t i t u d e .
1 // Return 0 i f ok , e l s e −1.
2 int SceneGraph :: updateAltitude (Object *p_o , int new_alt)

3

4 // Check i f new a l t i t u d e in v a l i d range .

4.17. End Game (optional) 212

5 if not valueInRange (new_alt , 0, MAX_ALTITUDE) then

6 return error

7 end if

8

9 // Make sure o l d a l t i t u d e in v a l i d range .
10 if not valueInRange (p_o -> getAltitude (), 0, MAX_ALTITUDE)) then

11 return error

12 end if

13

14 // Remove from o l d a l t i t u d e .
15 remove p_o from visible_objects [p_o -> getAltitude ()]

16

17 // Add to new a l t i t u d e .
18 insert p_o into visible_objects [new_alt]
✝ ✆

Calls to updateSolidness() and UpdateAltitude() are made from Object, specifically
Object setSolidness() and Object setAltitude(), respectively. The needed extension
to Object setSolidness() to support SceneGraph is shown in Listing 4.194. The first
block of code checks if the new solidness is valid (HARD, SOFT or SPECTRAL). If not, an error
is returned. Otherwise, the updateSolidness() method of the SceneGraph is called and
solidness is set in the Object.

Listing 4.194: Object class extension to setSolidness() to support SceneGraph
✞ ☎

0 // Set o b j e c t s o l i d n e s s , w i th checks f o r con s i s t enc y .
1 // Return 0 i f ok , e l s e −1.
2 int Object :: setSolidness (Solidness new_solidness)

3

4 // I f s o l i d n e s s not va l i d , then i gno r e .
5 if new_solidness not (HARD or SOFT or SPECTRAL) then

6 return error

7 end if

8

9 // Update scene graph and s o l i d n e s s .
10 scene_graph . updateSolidness (this , new_solidness)

11 solidness = new_solidness
✝ ✆

Extension to Object setAltitude() to support SceneGraphs is shown in Listing 4.195.
The first block of code checks if the new altitude is in a valid range. If not, an error is
returned. Otherwise, the SceneGraph updateAltitude() method is called and altitude

is set in the Object.

Listing 4.195: Object class extension to setAltitude() support SceneGraphs
✞ ☎

0 // Set o b j e c t a l t i t u d e .
1 // Checks f o r in range [0 , MAX ALTITUDE] .
2 // Return 0 i f ok , e l s e −1.
3 int Object :: setAltitude (int new_altitude)

4

5 // I f a l t i t u d e o u t s i d e o f range , then i gno r e .
6 if not valueInRange (new_altitude , 0, MAX_ALTITUDE) then

7 return error

8 end if

9

10 // Update scene graph and a l t i t u d e .

4.17. End Game (optional) 213

11 scene_graph . updateAltitude (this , new_altitude)

12 altitude = new_altitude
✝ ✆

With the SceneGraph in place, the Dragonfly WorldManager needs to be refactored
to use the SceneGraph to manage game world Objects instead of storing the ObjectLists
directly. Listing 4.196 shows the change in the WorldManager needed to use a SceneGraph.
Basically, the attribute ObjectList updates is replaced with SceneGraph scene graph.
The method getSceneGraph() returns a reference to scene graph.

Listing 4.196: WorldManager extensions to support SceneGraph✞ ☎

0 private:

1 SceneGraph scene_graph ; // Storage f o r a l l Ob j e c t s .
2

3 public:

4 // Return r e f e r e n c e to the SceneGraph .
5 SceneGraph & getSceneGraph () const;
✝ ✆

Then, internally, each of the WorldManager methods in Listing 4.197 needs to be refac-
tored to support the SceneGraph. The methods insertObject() and removeObject()

call and return scene graph.insertObject() and scene graph.removeObject(), respec-
tively. The methods update() and setViewFollowing() call scene graph.allObjects()

to iterate through all the world Objects. The method draw() iterates through each altitude,
calling scene graph.visibleObjects() for each altitude. The method isCollision()

checks for collisions only with Objects in the ObjectList returned from scene graph-

.solidObjects().

Listing 4.197: WorldManager methods to refactor to support SceneGraph✞ ☎

0 ObjectList getAllObjects ()

1 int insertObject (Object *p_o)

2 int removeObject (Object *p_o)

3 int setViewFollowing (Object *p_new_view_following)

4 void update ()

5 void draw ()

6 ObjectList isCollision (const Object *p_o , Vector where) const
✝ ✆

4.17.1.1 Inactive Objects (optional)

For many games, it is useful for the game program to have game objects be ignored by the
engine for some time, but without removing the objects altogether. For example, the Saucer
Shoot tutorial game (Section 3.3.11 on page 38) has the main menu become inactive when
the game is being played, becoming active again after the player’s ship has been destroyed.
Such inactive objects are not drawn by the engine, are neither moved nor considered in
collisions, nor do they receive any events.

In order to support inactive Objects in Dragonfly, the Object class is extended with
an attribute and methods to support whether an Object is active or inactive, shown in
Listing 4.198. The boolean attribute is active is true when the Object is active (note, all
the Objects that have been dealt with to this point are active) and false when the Object
is inactive and not acted upon by the engine. This value can be set via the setActive()

method and queried via the isActive() method.

4.17. End Game (optional) 214

Listing 4.198: Object class extensions to support inactive objects✞ ☎

0 private:

1 bool is_active ; // I f f a l s e , Ob j ec t not ac ted upon .
2

3 public:

4 // Set a c t i v e n e s s o f Ob j ec t . Ob j e c t s not a c t i v e are not ac ted upon
5 // by eng ine .
6 // Return 0 i f ok , e l s e −1.
7 int setActive (bool active=true);

8

9 // Return a c t i v e n e s s o f Ob j ec t . Ob j e c t s not a c t i v e are not ac ted upon
10 // by eng ine .
11 bool isActive () const;
✝ ✆

As shown in Listing 4.199, the method setActive() allows the game programmer to set
the Object activeness, changing is active as appropriate. Objects are active (is active

is true) by default, set in the constructor. In addition, the SceneGraph is obtained from
the WorldManager and the SceneGraph updateActive() method is called.

Listing 4.199: Object setActive()✞ ☎

0 // Set a c t i v e n e s s o f Ob j ec t . Ob j e c t s not a c t i v e are not ac ted upon
1 // by eng ine .
2 // Return 0 i f ok , e l s e −1.
3 int Object :: setActive (bool active)

4

5 // Update scene graph .
6 scene_graph = WorldManager getSceneGraph ()

7 scene_graph . updateActive (this , active)

8

9 // Set a c t i v e va l u e .
10 is_active = active
✝ ✆

The SceneGraph is refactored to have an additional ObjectList, one that holds only
inactive Objects while the main object list will hold active Objects. Listing 4.200 shows the
changes to the SceneGraph attributes for this. The objects ObjectList has been renamed
to active objects to differentiate it from the ObjectList holding the inactive objects,
inactive objects.

Listing 4.200: SceneGraph extensions to support inactive Objects✞ ☎

0 private:

1 ObjectList active_objects ; // A l l a c t i v e Ob j e c t s .
2 ObjectList inactive_objects ; // A l l i n a c t i v e Ob j e c t s .
3

4 public:

5 // Return a l l a c t i v e Ob j e c t s . Empty l i s t i f none .
6 ObjectList activeObjects () const;

7

8 // Return a l l i n a c t i v e Ob j e c t s . Empty l i s t i f none .
9 ObjectList inactiveObjects () const;

10

11 // Re−p o s i t i o n Obj ec t in SceneGraph to new a c t i v e n e s s .
12 // Return 0 i f ok , e l s e −1.
13 int updateActive (Object *p_o , bool new_active);
✝ ✆

4.17. End Game (optional) 215

The methods activeObjects() and inactiveObjects() return active objects and
inactive objects, respectively.

Listing 4.201 shows the SceneGraph updateActive() method. The first block of code
checks if the activeness is being changed. If not, there is nothing more to do and an
“ok” (0) is returned. The second block of code does the actual work. If the Object was
active and became inactive, remove() is called on active objects, visible objects[]

and, if solid, solid objects and the Object is inserted into the inactive objects list.
Otherwise, if the Object was inactive and became inactive, insert() is called on active -

objects, visible objects[] and, if solid, solid objects and the Object is removed from
the inactive objects list. All method calls should be error checked and an error (-1)
returned, as appropriate. Otherwise, “ok” is returned at the end.

Listing 4.201: SceneGraph updateActive()
✞ ☎

0 // Re−p o s i t i o n o b j e c t in scene graph based on a c t i v e n e s s .
1 // Return 0 i f ok , e l s e −1.
2 int SceneGraph :: updateActive (Object *p_o , bool new_active)

3

4 // I f a c t i v e n e s s unchanged , no th ing to do (bu t ok) .
5 if p_o ->isActive () is new_active then

6 return ok

7 end if

8

9 // I f was a c t i v e then now i n a c t i v e , so remove from l i s t s .
10 if p_o ->isActive () then

11

12 active_objects .remove(p_o)

13

14 visible_objects [p_o -> getAltitude ()]. remove(p_o)

15

16 if p_o ->isSolid () then

17 solid_objects .remove(p_o)

18 end if

19

20 // Add to i n a c t i v e l i s t
21 inactive_objects .insert(p_o)

22

23 else // Was ac t i v e , so add to l i s t s .
24

25 active_objects .insert(p_o)

26

27 visible_objects [p_o -> getAltitude ()]. insert(p_o)

28

29 if p_o ->isSolid () then

30 solid_objects .insert(p_o)

31 end if

32

33 // Remove from i n a c t i v e l i s t
34 inactive_objects .remove(p_o)

35

36 end if

37

38 // A l l i s w e l l .
39 return ok

4.17. End Game (optional) 216

✝ ✆

The WorldManager getAllObjects() method is refactored, as in Listing 4.202. A
boolean parameter inactive is provided to indicate whether the method should return
only active Objects (inactive is false, the default) or both active and inactive Objects
(inactive is true).

Listing 4.202: WorldManager extensions to support inactive Objects
✞ ☎

0 // Return l i s t o f a l l Ob j e c t s in wor ld .
1 // I f i n a c t i v e i s true , i n c l u d e i n a c t i v e Ob j e c t s .
2 // Return NULL i f l i s t i s empty .
3 ObjectList getAllObjects (bool inactive = false);
✝ ✆

The revised getAllObjects() is shown in Listing 4.203. The inactive case can use the
overloaded ‘+’ operator from Section 4.5.2.2 (page 81).

Listing 4.203: WorldManager extensions to getAllObjects() to support inactive Objects
✞ ☎

0 // Return l i s t o f a l l Ob j e c t s in wor ld .
1 // I f i n a c t i v e i s true , i n c l u d e i n a c t i v e Ob j e c t s .
2 // Return NULL i f l i s t i s empty .
3 ObjectList WorldManager :: getAllObjects (bool inactive) const

4

5 if inactive then

6 return scene_graph . activeObjects () + scene_graph . inactiveObjects ()

7 else

8 return scene_graph . activeObjects ()

9 end if
✝ ✆

The Manager onEvent() method needs to be modified to check if an interested Object
is actually active before sending it an event. This is shown on line 3 of Listing 4.204.

Listing 4.204: Manager extension to onEvent() to support inactive Objects
✞ ☎

0 ...

1 create ObjectListIterator li on obj_list [i]

2 while not li.isDone () do

3 if li. currentObject -> isActive () then

4 invoke i.currentObject () -> eventHandler () with p_event

5 end if

6 li.next ()

7 end while

8 ...
✝ ✆

Lastly, WorldManager shutDown() should be revised to call getAllObjects(true) to
delete both active and inactive Objects when the engine is shut down.

4.17.1.2 Invisible Objects (optional)

Another useful property for many game objects is to become invisible. For a game object,
invisibility could be a special power, say, for the hero or a bad guy to vanish from sight –
but as such, it is rather rare. However, invisibility is commonly used to limit the player’s
ability to see objects that may be on the window, but should not yet be shown to the player

4.17. End Game (optional) 217

because of the player’s avatar’s orientation, or because of terrain or other “fog of war” type
of effect.

To support invisibility, a new attribute is added to Object with methods for getting
and setting it, shown in Listing 4.205. The method isVisible() returns the value of
is visible.

Listing 4.205: Object class extensions to support invisibility
✞ ☎

0 private:

1 bool is_visible ; // I f true , o b j e c t g e t s drawn .
2

3 public:

4 // Set v i s i b i l i t y o f Ob j ec t . Ob j e c t s not v i s i b l e are not drawn .
5 // Return 0 i f ok , e l s e −1.
6 int setVisible (bool visible =true);

7

8 // Return v i s i b i l i t y o f Ob j ec t . Ob j e c t s not v i s i b l e are not drawn .
9 bool isVisible () const;
✝ ✆

As shown in Listing 4.206, the method setVisible() allows the game programmer to set
the Object visibility, changing is visible as appropriate. Objects are visible (is visible

is true) by default. In addition, the SceneGraph is obtained from the WorldManager and
the SceneGraph updateVisible() method is called.

Listing 4.206: Object setVisible()
✞ ☎

0 // Set v i s i b i l i t y o f Ob j ec t . Ob j e c t s not v i s i b l e are not drawn .
1 // Return 0 i f ok , e l s e −1.
2 int Object :: setVisible (bool visible)

3

4 // Update scene graph .
5 scene_graph = WorldManager getSceneGraph ()

6 scene_graph . updateVisible (this , visible)

7

8 // Set v i s i b i l i t y va l u e .
9 is_visible = visible
✝ ✆

Listing 4.207 shows the SceneGraph updateVisible() method. The first block of code
checks if the visibility is being changed. If not, there is nothing more to do and an “ok”
(0) is returned. The second block of code does the actual work. If the Object was visible
and went invisible, remove() is called on the ObjectList, otherwise insert() is called, at
the right altitude (p o->getAltitude()). All method calls should be error checked and an
error (-1) returned, as appropriate. Otherwise, “ok” is returned at the end.

Listing 4.207: SceneGraph updateVisible()
✞ ☎

0 // Re−p o s i t i o n Obj ec t in scene graph based on v i s i b i l i t y .
1 // Return 0 i f ok , e l s e −1.
2 int SceneGraph :: updateVisible (Object *p_o , bool new_visible)

3

4 // I f v i s i b i l i t y unchanged , no th ing to do (bu t ok) .
5 if p_o ->isVisible () is new_visible then

6 return ok

7 end if

4.17. End Game (optional) 218

8

9 // I f was v i s i b l e then now i n v i s i b l e , so remove from l i s t .
10 if p_o ->isVisible () then

11 visible_objects [p_o -> getAltitude ()]. remove(p_o)

12 else // Was i n v i s i b l e , so add to l i s t .
13 visible_objects [p_o -> getAltitude ()]. insert(p_o)

14 end if

15

16 // A l l i s w e l l .
17 return ok
✝ ✆

4.17.2 Development Checkpoint #14!

To develop the SceneGraph for Dragonfly, use the following steps:

1. Create the SceneGraph class, referring to Listing 4.189 as needed. Add SceneGraph.cpp
to the project and stub out each method so the SceneGraph compiles.

2. Implement the SceneGraph insertObject() and removeObject()methods based on
Listing 4.190 and Listing 4.191, respectively. Test outside of the game engine by
adding and removing Objects.

3. Implement the SceneGraph updateSolidness() method, based on Listing 4.192 and
updateAltitude(), based on Listing 4.193.

4. Extend the Object class setSolidness() to support a SceneGraph, referring to List-
ing 4.194. Do the same for setAltitude(), referring to Listing 4.195.

5. Extend the WorldManager to support a SceneGraph, as in Listing 4.196. Refactor
the methods shown in Listing 4.197, as appropriate.

6. Test by verifying that previous code that worked without SceneGraphs still works,
such as test code from the last development checkpoint (on page 206).

If support for inactive Objects is desired (optional), continue development:

1. Extend Object to support activeness based on Listing 4.198, implementing setActive()
based on Listing 4.199.

2. Refactor the SceneGraph based on Listing 4.200, implementing updateActive() based
on Listing 4.201.

3. Refactor the WorldManager based on Listing 4.202, extending getAllObjects()()

to return inactive Objects, too, based on Listing 4.203.

4. Test with game code that sets another game object to inactive and back, say, based
upon key presses.

If support for invisibility is desired (optional), continue development:

4.17. End Game (optional) 219

1. Extend Object to support invisibility based on Listing 4.205.

2. Implement Object setVisible() based on Listing 4.206 and SceneGraph update-

Visible(), based on Listing 4.207.

3. Test with game code that has game objects set themselves to invisible and back, say,
depending upon key presses or positions on the screen.

