
Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #4

Dragonfly Egg

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 10.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2025 Mark Claypool and WPI. All rights reserved.

4.5. The Game World 90

4.5.4 Updating Game Objects

The world in real-life is dynamic, with objects changing continuously over time. Game
worlds are often viewed the same way since they are also dynamic, but the game engine
advances the game world in discrete steps, one step each game loop. Viewed another way,
each iteration of the game loop updates game objects to produce a sample of the dynamic
game world, with Dragonfly taking 30 samples per second. At the end of a game loop,
the static representation of the world is displayed to the player on the screen. Objects are
consistent with each other at that time. However, while updating the world (so, in the
middle of a game loop iteration), the game world may be in an inconsistent state. This
latter fact is important in handling how game objects are deleted (more on this, later).

Updating the objects in the game world is one of the core functions of a game engine.
Such updates: 1) Make the game dynamic since many objects change state during the
course of the game. For example, an enemy can change position, moving towards the
player’s avatar. 2) Make the game interactive, since objects can respond to player input.
For example, a player avatar object can be moved north in response to the player pressing
the up arrow.

The simple approach to updating game objects is to have each object have an Update()

method. In the game loop, the engine then iterates over all objects in the world, calling
Update() for each object, as shown in Listing 4.45. In this case, the Update() method is
responsible for updating the state of the object as appropriate. This could mean moving
the object in a certain direction at a certain speed, or gathering input from the keyboard or
mouse or doing whatever other unique action needs to happen each step of the game loop.
Some actions, such as movement and keyboard input, could be generalized and handled by
the game engine (as will be shown later in this chapter). Other actions, such as AI behavior
specific to a game, would need to happen in the game code.

Listing 4.45: Game loop with update
? .

0 ObjectList world_objects

1 while (game not over) {

2 ...

3 // Update wor ld s t a t e .
4 for i = 0 to world_objects count

5 Object p_o = world_objects [i]

6 p_o -> Update ()

7 end for

8 ...

9 }
? '

As an abstraction, use of the Update() method for all game objects is useful, since it
gets at the heart of what a game engine does. However, the specific implementation of this
straightforward idea has complications. These complications arise from subsystems that
operate on behalf of all objects. For example, an update for a game object often consists
of: moving the object (including checking and responding to collisions), then drawing the
object on the screen. For a Saucer from Saucer Shoot in Section 3.3, this might look like
the code in Listing 4.46. The proposed implementation looks harmless enough, but consider
what is happening for all objects. Each object is moved, collided and drawn completely
before the next object is handled. This serial behavior does not allow for drawing efficiency.

4.5. The Game World 91

For example, it may be that an object is not drawn at all because it is occluded by another
object or even destroyed by another object that moves later in the same game loop iteration.
The serial nature of updates for each game does not allow for tuning. Worse, in some cases,
game objects cannot be drawn until the position of other game objects are known. For
example, drawing a passenger must be done once the position of the vehicle is known, or
the limbs of a 3d model may not be drawable until the position of the skeleton is known.
Thus, efficiency and functionality require another solution.

Listing 4.46: Possible Update() method for Saucer
? .

0 // Update saucer (shou l d be c a l l e d once per game loop) .
1 void Saucer :: Update ()

2 WorldManager move (this)

3 WorldManager drawSaucer (this)
? '

Instead, the subsystems that handle each task (e.g., move, draw) are done as separate
functions by the game engine. The Update() method for each object does not need to ask
the game engine to move, collide or draw the game object itself. These are instead handled
in phases by the game engine, depicted in Listing 4.47. Note, the Update() method for each
game object can still be invoked, calling game code, to do any game-specific functionality
that is needed.

Listing 4.47: Game loop with phases
? .

0 ObjectList world_objects

1 while (game not over) do

2 ...

3 // Update Ob j e c t s
4 for i = 0 to world_objects count

5 // Update
6 end for

7

8 // Move Ob j e c t s
9 for i = 0 to world_objects count

10 // Move
11 end for

12

13 // Draw Ob j e c t s
14 for i = 0 to world_objects count

15 // Draw
16 end for

17 ...

18

19 end while
? '

4.5.5 Events

Games are inherently event-driven. In the previous section, each iteration of the game loop
is often treated as an event. In other words, in Listing 4.47, each iteration of the game loop
triggers an event that is the Update() method for each object. A typical game has many
events, such as a key is pressed, a mouse is clicked, an object collides with another object,
a bomb explodes, an avatar picks up a health pack, a network packet arrives, etc.

4.5. The Game World 92

Generally, when an event occurs, an engine: 1) notifies all interested objects, and 2)
those objects respond as appropriate, also called called event handling. When a specific
event occurs, different objects respond in different ways, and in some cases, may not even
respond at all. For example, when a keypress event occurs, the hero object the player is
controlling may move or fire, but most other objects do not respond. When a car object
collides with a rock object, the car object may stop and take damage while the rock object
may move slightly backward and remain unharmed.

The simple approach to dealing with game events is for the game engine to call the
appropriate method for each game object when the event occurs. In Listing 4.47, this
means that each step of the game loop (a step event) invokes the Update() method of each
game object. Consider another example, where there is an explosion in a game, handled in
the Update() method of an Explosion object, shown in Listing 4.48. In this case, all game
objects within the radius of the explosion have their onExplosion() method invoked.

Listing 4.48: Explosion Update()
? .

0 void Explosion :: Update()

1 ...

2 if (explosion_went_off) then

3

4 // Get l i s t o f a l l Ob j e c t s in range .
5 ObjectList damaged_objects = getObjectsInRange (radius)

6

7 // Have them each r eac t to e x p l o s i o n .
8 for i = 0 to damaged_objects count

9 damaged_objects [i] -> onExplosion ()

10 end for

11

12 ...

13 end if
? '

Listing 4.48 illustrates statically typed, late binding. The code is “late binding” since the
compiler does not know what code is to be invoked at compile time – invocation is bound
to the right method, depending upon the object (e.g., Saucer or Hero), at run time. The
code is “statically typed” since the type of the object (an Object) and name of the method
(onExplosion(), on line 9) are known at compile time. All this sounds ok, and Listing 4.48
looks ok, so what is the problem?

In a nutshell, for a general purpose game engine the problem with this approach is
inflexibility. The statically typed requirement means that all game objects must have
methods for all events. Specifically, for this example, it means every game object needs
an onExplosion() method, even if not all objects use it. The fact that an game object
may not use it is perhaps not so bad, since it can just be ignored (the onExplosion()

method essentially being a “no-op” for that object). However, some games will not even
have explosions, but this approach still requires all game objects to have that method. In
fact, it requires that all events that any game made with the engine be known, and defined,
at compile time. If a game is to be made using an event that is not defined, then too bad
for the game programmer – the engine will not support it. That makes it quite difficult
for the game engine to be general purpose, able to support a variety of games, much less a
variety of game genres.

4.5. The Game World 93

What is needed is dynamically typed, late binding. While some languages support
dynamic typing automatically (e.g., C#), others, such as C++, must implement dynamic
typing manually. Fortunately, this can be done fairly easily by treating events as objects.
When an event occurs, it is passed to all game objects that are interested in that event. In
the event handler, the event object is inspected for the event type and attributes, and an
appropriate action is taken. This paradigm is often called message passing.

In order to provide the flexibility needed without forcing the engine to recognize all event
types at compile time, the event is encapsulated in an Event object. The Event object has
the information required to represent the event type (e.g., explosion, health pack, collision,
...) with the ability to have additional attributes unique to each event (e.g., radius and
damage, healing amount, location, ...), and can be extended by the game programmer.
Representing events this way has several advantages over the approach in Listing 4.48.

1. Single event handler: Each game object does not need a separate method for each
event (for example, objects do not all need an onExplosion()method). Instead, game
objects have a generic event handler method (e.g., virtual int eventHandler(Event

*p e)), declared as virtual so it can be overridden, as needed, by derived game code
objects.

2. Persistence: Event data pertaining to the event can be easily stored (say, in a list
inside an object) and handled later.

3. Blind forwarding: An object can pass along an event without even “understanding”
what the event does. Note, this is exactly what the game engine does when it passes
events to game objects! For example, a jeep object may get a “dismount” event. The
jeep itself does not know how to dismount nor have any code to recognize such an
event, but it can pass the event, unmodified, to each of the passengers that it does
know about. The passengers, say people objects, know how to handle a dismount
event, and so take the appropriate action.

There are several options for representing the “type” for each event. One approach is to
make each type an integer. Integers are small and are efficiently handled by the computer
during runtime. Using an enum can make the integer type more programmer-friendly. For
example, an enum EventType can be declared with values of COLLISION, MOVE UP, MOUSE -

CLICK, ... declared. Each “name” is assigned a unique integer value by the compiler. Game
programmers can extend the types to include game specific definitions (e.g., EXPLOSION).
While easy to read and efficient, enum types are relatively brittle in that the actual values
are order dependent, meaning if the order of the names is re-arranged, the integer values
corresponding to each change. This is not a problem if the code using them is re-compiled
accordingly, but can cause problems for things like save game files or databases, or types
stored in source code across systems. Worse, C++ does not readily allow for enums to be
extended, meaning the game programmer cannot easily add custom event types to types
already declared by the engine.

Another option, one used in Dragonfly, is to store event types as strings (e.g., std::string
event type). Strings as a type are dynamic in that they are parsed at runtime, allowing
free form use by game programmers. Thus, events can be added easily, such as “explosion”

4.5. The Game World 94

or “the dog ate my homework”. The downside is that strings are relatively expensive to
parse compared with integers. However, string comparisons (the most common operation
when checking events at runtime) are usually fast. Another downside is that game program-
mers, especially for large teams, may have potential event name conflicts with each other
or even with the engine. A bit of care where a team of game programmers agrees upon a
naming convention can usually solve this problem. For event names, Dragonfly uses a “df::”
prefix, as it does for a namespace (see page 53), in front of game engine event names (e.g.,
"df::step"). If needed (or for really large development efforts), more elaborate software
tools can even be used to avoid conflicts, checking code for conflicts ahead of time and
detecting human errors.

The arguments needed for each event depend upon the type. For example, an explosion
event may need a radius and damage, while a collision event needs the two objects involved
and perhaps a force vector. The easiest mechanism to support this is to have a new derived
class for each event, where the class inherits from the base event class. Listing 4.49 shows
how this might be declared.11 In the game code, an event handler looks at the event type.
If it is, for example, an “explosion” and the object should recognize and handle explosion
events, then the object can be inspected for a location, damage and radius.

Listing 4.49: Simple event class
? .

0 class Event {

1 std:: string event_type ;

2 };

3

4 class EventExplosion : public Event {

5 Vector location ;

6 int damage;

7 float radius;

8 };
? '

As discussed earlier, game objects are often connected to each other, so a vehicle may get
a “dismount” event, but it is really intended for the passengers, or a solider may get a “heal”
event that does not need to be passed to her backpack or to the pistol inside. A dependency
chain, often called a chain of responsibility design pattern, can be drawn between events,
illustrating their relationship. In this case, vehicle–soldier–backpack–pistol. Events that
start at the head of the chain are passed down the chain, stopping when “consumed” or
when the end of the chain is reached. For example, a “heal” event starts at the vehicle,
is forwarded blindly to the soldier where it is consumed, and not passed further. An
“explosion” event starts at the vehicle, where it takes damage, but then is passed along to
each object in the chain since all take damage, too.

Listing 4.50 illustrates how a chain of responsibility might look for a particular game. On
line 2, some events are “consumed” (completely handled) by the base class and no further
action is required. On line 6, damage events invoke a response from someGameObject, but
are not consumed in that other objects can respond to the damage, too. On line 10, health
pack events are consumed, so other objects in the chain do not handle them. Unrecognized
events, line 15, are not handled.

11Note, methods to set the event type are not shown.

4.5. The Game World 95

Listing 4.50: Chain of responsibility? .

0 bool someGameObject :: eventHandler (Event *p_event)

1 // Ca l l base c l a s s ’ hand l e r f i r s t .
2 if (BaseClass :: eventHandler (p_event))

3 return true // I f base consumed , then done .
4

5 // Otherwise , t r y to hand l e even t myse l f .
6 if p_event -> getType () is EVENT_DAMAGE then

7 takeDamage (p_event -> getDamageInfo ())

8 return false // Responded to event , bu t ok to forward .
9 end if

10 if p_event -> getType () is EVENT_HEALTH_PACK then

11 doHeal(p_event -> getHealthInfo ())

12 return true // Consumed event , so don ’ t forward .
13 end if

14 ...

15 return false // Didn ’ t r e co gn i z e t h i s even t .
? '

The code in Listing 4.50 is almost right – but the compiler will throw up an error at
lines 7 and 11.

4.5.5.1 Events in Dragonfly

Listing 4.51 provides the header file for the Event class. The event type string type is
a string and is set to UNDEFINED EVENT on line 2 in the constructor. The setType() and
getType() methods change and return the event type, respectively. The virtual keyword
in front of the destructor in line 14 ensures that if a pointer to a base Event is deleted (say,
in the engine), the destructor to the child gets called, as appropriate.

Listing 4.51: Event.h
? .

0 #include <string >

1

2 const std:: string UNDEFINED_EVENT = ” d f : : u n d e f i n e d”;

3

4 class Event {

5

6 private:

7 std:: string m_event_type ; // Holds even t type .
8

9 public:

10 // Create base even t .
11 Event();

12

13 // Des t ruc to r .
14 virtual ~Event();

15

16 // Set even t type .
17 void setType (std:: string new_type);

18

19 // Get even t type .
20 std:: string getType () const;

21

22 };
? '

4.5. The Game World 96

The base Event class is passed around to game objects. It is expected that game code
inherits from Event in defining game specific events, such as EventNuke in Saucer Shoot
(Section 3.3.8 on page 34). Dragonfly recognizes (and pass several) specific events that are
derived from Event. These “built in” events are depicted in Figure 4.2. Most of them are
defined later in this chapter as they are introduced, except for the “step” event, which is
defined next in Section 4.5.5.2.

Figure 4.2: Dragonfly events

4.5.5.2 Step Event

Often, a game object does something every step of the game loop. For example, a sentry
object may look around to see if there is a bad guy is within sight, or a bomb object may see
if enough time has passed and it is time to explode. Dragonfly supports this by providing
a “step” event each game loop for game objects that want to handle it.

Listing 4.52 provides the header file for the EventStep class. EventStep is derived from
the Event base class. The private attribute m step count is to record the current iteration
number of the game loop. Methods are provided to get and set m step count, as well as a
constructor to set the initial m step count, if desired. Other “work” done in the constructor
is to set the base event type (using setType()) to STEP EVENT.

Listing 4.52: EventStep.h
? .

0 #include ” Event . h”

1

2 const std:: string STEP_EVENT = ” d f : : s t e p ”;

3

4 class EventStep : public Event {

5

6 private:

7 int m_step_count ; // I t e r a t i o n number o f game loop .
8

9 public:

10 // De f au l t c on s t ru c t o r .
11 EventStep ();

12

13 // Cons truc tor w i th i n i t i a l s t e p count .
14 EventStep (int init_step_count);

15

16 // Set s t e p count .
17 void setStepCount (int new_step_count);

18

19 // Get s t e p count .
20 int getStepCount () const;

4.5. The Game World 97

21 };
? '

Inside the engine, the step event is handled like any other event, in terms of being
stored and sent to Objects’ event handlers. Inside the event handler code for an Object is
where, if required, the step event is recognized and acted upon. For example, as shown in
Listing 4.53, the Points object in Saucer Shoot (Chapter 3) recognizes the step event in its
eventHandler(), counting the number of times called so it can increment the score every
30 steps (1 second).

Tip 12! Dereferencing pointers and invoking methods. To invoke an Object
method from inside the game engine, the object pointer is dereferenced. Normal
dereferencing uses ‘*’, and normal method invocation uses ‘.’. However, combined,
the preferred syntax is to use ‘->’. For example, to check the type of a game object
named p e, the code could be written as (*p e).getType(). However, the preferred
syntax, and identical functionality, is written as p e->getType().

Listing 4.53: Points eventHandler()? .

0 int Points :: eventHandler (const Event *p_e) {

1 ...

2 // I f s tep , increment score every second (30 s t e p s) .
3 if (p_e -> getType () == df:: STEP_EVENT) {

4 if (p_e -> getStepCount () % 30 == 0)

5 setValue (getValue () + 1)

6 ...

7 }
? '

The GameManager sends step events to each interested game object, once per game
loop. Basically, inside the game loop, the GameManager iterates over each of the Objects
in the game world and sends each of them an EventStep, with the step count set (via
setStepCount()) to the current game loop iteration count. Listing 4.54 shows pseudo code
for sending step events to all objects in the game world. Line 2 gets all the Objects to iterate
over from the WorldManager (see Section 4.5.6 on page 99). Line 3 creates an instance of
the step event (EventStep) that will be passed to each Object, with loop count referring
to the current iteration number of the game loop. Lines 4 to 7 iterate through all Objects
in the world, passing the step event to the Object event handlers in line 5.

Listing 4.54: Sending step events? .

0 ...

1 // Send s t ep even t to a l l Ob j e c t s .
2 all_objects = WorldManager getAllObjects ()

3 create EventStep s(game_loop_count)

4 for i = 0 to all_objects count

5 all_objects [i] -> eventHandler () with s

6 li.next ()

7 end for

8 ...
? '

4.5. The Game World 98

4.5.5.3 Casting

C++ is a strongly typed language. Among other things, this means that values of one type
(e.g., float) can only be assigned to variables that are of the same type (e.g., float f) or
of a different type that has a known conversion (e.g., int i, where values after the decimal
point are truncated). When a type is assigned to a variable of a different type where there
is no known conversion, one of two things can happen. If the types are of different sizes and
structures, such as a struct type being assigned to an int, then the compiler produces an
error message and halts. If the types are the same size, such as a enum type being assigned
to an int, then the compiler produces a warning message but continues to compile the code.
At runtime, then, the conversion does happen (enum to int, in this example) even if that
is not what the programmer intended.

Tip 13! Heeding warnings. In general, warning messages from a compiler should
not be ignored. The compiler is indicating something is potentially amiss when it
throws up a warning. A programmer should pay attention to any warning, resolving
it whenever possible (and usually it is possible), such as, for example, casting to
indicate to the compiler that an implicit conversion is intended. Even if the current
warnings are harmless in that the code still executes fine, by ignoring them, it makes
it more likely that future warnings, that may not be harmless go unnoticed.

In game code, when the engine provides a generic event, the event handler often needs
to convert the generic event to a specific event when it determines what type it is. With
Dragonfly, the eventHandler() for an Object is invoked with a pointer to a generic event
(e.g., an Event *). Once the eventHandler() determines the event type (e.g., a step event,
EventStep) by invoking the getType() method, it can treat the event as the specific type.

In C++, this can be done with a type-cast (or just cast for short) which converts one
type to another. C++ has different varieties of type-casts, but the one needed in this
case is the dynamic cast.12 The syntax for a dynamic cast is dynamic cast <new type>

(expression). For example, a dynamic cast from a base class to a derived class is written
as in Listing 4.55. The value of p b of type Base * is converted to a different type, type
p d.

Listing 4.55: Cast from base class to derived class
? .

0 class Base {};

1 class Derived : public Base {};

2 Base *p_b = new Base ;

3 Derived *p_d = dynamic_cast <Derived *> (p_b);
? '

Generally, a dynamic cast is used for converting pointers within an inheritance hierar-
chy, almost exclusively for handling polymorphism (see Chapter 1).

For a game developed using Dragonfly, a cast is often needed in a game object’s
eventHandler(). The eventHandler() takes as input a pointer to a generic event, or

12The C-style cast (e.g., int x = (int) 4.2) is generally replaced with a static cast in C++.

4.5. The Game World 99

an Event *. Once the type of the event is determined by invoking the method getType()

and examining the string returned, the game code often acts on the event, as appropriate.
For example, in Listing 4.56 the Bullet’s eventHandler() from Saucer Shoot (Section 3.3 on
page 15) checks if the event type is a collision event (COLLISION EVENT – see Section 4.10.1.2
for details on the collision event). If so, it acts upon it in the hit()method. Since the Bullet
needs to access methods specific to the collision event to obtain the Object collided with for
destruction, the hit() method takes a pointer to a collision event, not a generic event. This
means the Event * passed to the eventHandler() must be cast as an EventCollision *.

Listing 4.56: Cast from Event to EventCollision
? .

0 int Bullet :: eventHandler (const df:: Event *p_e)

1 ...

2 if p_e ->getType () is df:: COLLISION_EVENT then

3 EventCollision *p_col_e = dynamic_cast <const df:: EventCollision *> (

p_e)

4 hit(p_col_e)

5 return 1

6 end if

7 ...
? '

4.5.6 The WorldManager

At this point, development of the game world has provided game objects, lists for those game
objects, and events along with a means of passing them to game objects. For Dragonfly, this
means the WorldManager can be designed and implemented. The WorldManager manages
game objects, inserting them into the game world, removing them when done, moving
them around, and passing along events generated by the game code. For now, this is all
the WorldManager does. Soon, however, the WorldManager’s functionality will expand to
manage world attributes, such as size and camera location, drawing and animating objects
and providing collisions and other game engine events.

The WorldManager is a singleton (see Section 4.2.1), so the methods on lines 6 to 8 are
private and line 15 provides the instance of the WorldManager. For now, the WorldManager
only has two attributes: 1) Line 10 m updates is a list holding all the game objects in the
world; and 2) Line 11 m deletions is a list of the game objects to delete at the end of the
current update phase.

The WorldManager constructor should set the type of the Manager to “WorldManager”
(i.e., setType("WorldManager") and initialize all attributes.

Listing 4.57: WorldManager.h
? .

0 #include ”Manager . h”

1 #include ” O b j e c t L i s t . h”

2

3 class WorldManager : public Manager {

4

5 private:

6 WorldManager (); // Pr i va t e (a s i n g l e t o n) .
7 WorldManager (WorldManager const&); // Don ’ t a l l ow copy .
8 void operator =(WorldManager const&); // Don ’ t a l l ow ass ignment .

4.5. The Game World 100

9

10 ObjectList m_updates ; // A l l Ob j e c t s in wor ld to update .
11 ObjectList m_deletions ; // A l l Ob j e c t s in wor ld to d e l e t e .
12

13 public:

14 // Get the one and on l y i n s t ance o f the WorldManager .
15 static WorldManager &getInstance ();

16

17 // Star tup game wor ld (i n i t i a l i z e e v e r y t h i n g to empty) .
18 // Return 0 .
19 int startUp ();

20

21 // Shutdown game wor ld (d e l e t e a l l game wor ld Ob j e c t s) .
22 void shutDown ();

23

24 // I n s e r t Ob j ec t i n t o wor ld . Return 0 i f ok , e l s e −1.
25 int insertObject (Object *p_o);

26

27 // Remove Obj ec t from wor ld . Return 0 i f ok , e l s e −1.
28 int removeObject (Object *p_o);

29

30 // Return l i s t o f a l l Ob j e c t s in wor ld .
31 ObjectList getAllObjects () const;

32

33 // Return l i s t o f a l l Ob j e c t s in wor ld matching type .
34 ObjectList objectsOfType (std :: string type) const;

35

36 // Update wor ld .
37 // De l e t e Ob j e c t s marked f o r d e l e t i o n .
38 void update ();

39

40 // I n d i c a t e Ob j ec t i s to be d e l e t e d a t end o f cu r r en t game loop .
41 // Return 0 i f ok , e l s e −1.
42 int markForDelete (Object *p_o);

43 };
? '

The methods insertObject() and removeObject() provide a means to insert and
remove objects in the world, respectively.

The markForDelete() method is called whenever an Object needs to be destroyed in
the course of running the game. For example, when a projectile object collides with a
target object (e.g., Bullet with Saucer), the projectile may mark both itself and the target
for deletion.

The method getAllObjects() returns the m updates ObjectList. A similar method,
objectsOfType() returns a list of Objects matching a certain type. This method, shown
in Listing 4.58, iterates through all Objects in the m updates list and each Object that
matches in type is added to the ObjectList, returned at the end.

Listing 4.58: WorldManager objectsOfType()
? .

0 // Return l i s t o f Ob j e c t s matching type .
1 // L i s t i s empty i f none found .
2 ObjectList objectsOfType (std :: string type) const

3

4 ObjectList list

4.5. The Game World 101

5 for i = 0 to m_updates count

6 if m_updates [i] equals type then

7 list .insert(m_updates [i])

8 end if

9 end for

10

11 return list
? '

The update() method is called from the GameManager (Section 4.4.4) once per game
loop. In general, the update phase moves objects, generates collision events, etc. For now,
it will only remove objects that have been marked for deletion.

The GameManager invokes WorldManager startUp() right after the LogManager is
started. At this point, the WorldManager does not do much in startUp(), except for
calling Manager::startUp(). Later versions of the WorldManager will set some of the
game world attributes.

When invoked (typically by the GameManager), WorldManager shutDown() deletes
all the Objects in the game world. Typically, the game code does not preserve the addresses
of game objects created to populate the world so only the WorldManager can do so. Pseudo
code for WorldManager shutDown() is shown in Listing 4.59.

Listing 4.59: WorldManager shutDown()
? .

0 // Shutdown game wor ld (d e l e t e a l l game wor ld Ob j e c t s) .
1 void WorldManager :: shutDown ()

2

3 // De l e t e a l l game o b j e c t s .
4 ObjectList ol = m_updates // Copy l i s t so can d e l e t e dur ing i t e r a t i o n .
5 for i = 0 to ol count

6 delete ol[i]

7 end for

8

9 Manager :: shutDown ()
? '

At this point, the Object class needs to be extended to support events. A public event
handling method, eventHandler() is declared as in Listing 4.60.

Listing 4.60: Event handler prototype
? .

0 // Handle even t (d e f a u l t i s to i gno r e e v e r y t h i n g) .
1 // Return 0 i f i gnored , e l s e 1 i f hand led .
2 virtual int eventHandler (const Event *p_e);
? '

The implementation body of the eventHandler() method should do nothing, merely
returning 0 indicating that the event was not handled. However, the keyword virtual

ensures that derived classes (such as Saucer and Hero) can define their own specific event
handlers. The keyword const indicates the event handler cannot modify the attributes
of the event pointed to (p e) – this is because the same event may be passed to multiple
Objects.

The Object constructor needs to be modified also. Specifically, it needs to add the
Object itself to the game world. A code fragment for this is shown in Listing 4.61. Since
parent constructors are automatically called from derived classes, a derived object created

4.5. The Game World 102

by the game programmer (e.g., a Hero) calls the Object constructor, causing the object to
automatically have itself added to the game world.

Listing 4.61: Object Object()
? .

0 // Cons truc t Ob j ec t . Set d e f a u l t parameters and
1 // add to game wor ld (WorldManager) .
2 Object:: Object ()

3

4 // Add s e l f to game wor ld .
5 WorldManager insertObject (this)
? '

Similarly, the destructor needs to remove the Object from the game world. A code
fragment for this is shown in Listing 4.62. In a fashion similar to the constructor, when a
derived object is destroyed, the parent destructor is called, removing the Object from the
game world.

Listing 4.62: Object ˜Object()
? .

0 // Destroy Ob j ec t .
1 // Remove from game wor ld (WorldManager) .
2 Object ::~ Object ()

3

4 // Remove s e l f from game wor ld .
5 WorldManager removeObject (this)
? '

4.5.6.1 Deferred Deletion

During the update phase of a game loop, a game object (with a base Object class) may
be tempted to delete itself (calling delete) or another game object, perhaps as a result of
a collision or after a fixed amount of time. But such an operation would likely be carried
out somewhere in the middle of the update loop, so the iteration would be in the middle of
going through the list of game world Objects. This may mean other Objects that are later
in the iteration act on the recently deleted Object!

To illustrate these issues, consider an example game where darts are thrown at colored
balloons for points. When a dart and a balloon collide, the WorldManager sends a collision
event to both the dart and the balloon. The balloon, upon getting the collision event,
destroys itself. The dart upon getting a collision, may also destroy itself. So far so good.
However, what if the dart also queries the balloon to see check the balloon’s color so as to
add the right number of points (say, popping red balloons earns more points than popping
green balloons). If the balloon has been deleted there is no way to do this! In fact, the
code will compile and run, but will most likely result in a memory violation error and crash
during gameplay. Moreover, objects, in general, should very rarely use delete this to be
removed. It is legal, but should only be done carefully under delicate circumstances.

A cleaner, safer method of removing game objects from the game world is via the
markForDelete() method in the WorldManager. Basically, an Object that is ready to be
destroyed or an Object that is ready to destroy another Object indicates this by telling the
WorldManager to delete the Object at the end of the current update phase. Pseudo-code
for the WorldManager’s markForDelete() is shown in Listing 4.63. The top code block

4.5. The Game World 103

makes sure not to add the Object more than once. Failure to do so would mean that if
an Object was marked more than once, delete would be called on an already de-allocated
block of memory. If the last line of the method is reached, the Object had not been added
so the list so it is added.

Listing 4.63: WorldManager markForDelete()? .

0 // I n d i c a t e Ob j ec t i s to be d e l e t e d a t end o f cu r r en t game loop .
1 // Return 0 i f ok , e l s e −1.
2 int WorldManager :: markForDelete (Object *p_o)

3

4 // Obj ec t might a l r eady have been marked , so on l y add once .
5 for i = 0 to m_deletions count

6 if m_delections [i] is p_o then // Obj ec t a l r eady in l i s t .
7 return 0 // This i s s t i l l ” ok ” .
8 end if

9 end for

10

11 // Obj ec t not in l i s t , so add .
12 m_deletions .insert(p_o)
? '

With the addition of the above code, some “unusual” code in the tutorial can be
explained. Specifically, when a Saucer is created via new the pointer is not saved (i.e.,
new Saucer;). Normally, this would look like a potential source of a memory leak in that
memory is allocated, but it is not clear it can be de-allocated with a corresponding delete

since the pointer value is lost. However, having now written the constructor for Object, the
pointer this is passed to the WorldManager where it is stored in the m updates list. When
the time comes to destroy the Object, the request is made to the WorldManager to mark
this Object for deletion, which then does call delete.

4.5.6.2 The Update Phase

With the new Object code in place, and the markForDelete()method available, the World-
Manager’s update() can be defined. Pseudo-code for WorldManager update() is shown in
Listing 4.64.

Lines 5 to 8 iterate through all Objects that have been marked for deletion, actually
deleting them by calling delete in line 8. Line 11 clears the deletion list (so there are no
Objects in it) to get ready for the next phase.

Listing 4.64: WorldManager update()? .

0 // Update wor ld .
1 // De l e t e Ob j e c t s marked f o r d e l e t i o n .
2 void WorldManager :: update ()

3

4 // De l e t e a l l marked Ob j e c t s .
5

6 for i = 0 to m_deletions count

7 delete m_deletions [i]

8 end for

9

10 // Clear l i s t f o r nex t update phase .
11 m_deletions .clear()
? '

4.5. The Game World 104

4.5.7 Program Flow for Game Object Lifetime

This section provides a summary of the lifetime in Dragonfly for Objects when they are
created and destroyed.

When a game object, derived from Object (e.g., Saucer), is created:

1. The game program (e.g., game.cpp) invokes new, say new Saucer.

2. The base Object constructor, Object(), is invoked first before the game object con-
structor, (e.g., before Saucer()).

3. The Object constructor, Object(), calls WorldManager insertObject() to request
being added to the game world.

4. WorldManager insertObject() calls insert() on the m updates ObjectList, thus
adding the game object to the game world.

5. Any remaining code is the derived constructor, Saucer(), is run.

When a game object is finished, ready to be destroyed:

1. The game program (e.g., game code in Saucer) calls WorldManager markForDelete(),
indicating the Object is ready to be deleted.

2. WorldManager markForDelete() calls m deletions.insert() to add the object to
the m deletions ObjectList.

3. GameManager run() calls WorldManager update() at the end of the current game
loop iteration.

4. At the end of the update() method, the WorldManager iterates through the m -

deletions ObjectList, calling delete on each Object in the list. The delete triggers
the derived Object’s destructor (e.g., ~Saucer()).13

5. After the derived Object’s destructor (e.g., ~Saucer()) is run, it calls the base class
destructor, Object ~Object().

6. The Object destructor, ~Object(), calls WorldManager removeObject(), requesting
the WorldManager to remove the Saucer from the game world.

7. WorldManager removeObject() calls remove() on the m updates ObjectList, remov-
ing the saucer from the game world.

13Remember, in C++, delete invokes an object’s destructor and frees memory allocated by new.

4.5. The Game World 105

4.5.8 Dragonfly Testing

This section provides some basic advice for getting started with game engine testing suitable
for completing Dragonfly Egg. The idea is to test functionality, both large and small, in
a modular fashion and, where possible, isolate the test code from the game engine code.
Small here, means individual methods, but also building up combined use of methods to
test integrated functionality. Large here means integrating functionality from several classes
(e.g., testing the GameManager). A detailed treatment of testing is provided in the “Taking
Flight” chapter.

For Dragonfly Egg development, initial testing is most easily done by isolating test code
in a function and calling it from main(). Each test, large and small, should be in a separate
function, allowing each function to be called individually. Commenting out individually test
functions can be done to “turn off” tests that are not needed at that time, but still keeping
the code around for later use. This latter idea – running a full set of tests, including tests
that have previously “passed” – is commonly called regression testing and can be valuable
for catching bugs that might arise in previously written code when adding new, seemingly
unrelated, code.

An example of the suggested testing is shown in Listing 4.65. There are two tests written,
testClock timing() and testStepEvent(), that correspondingly test if the timing aspects
of the Clock class and step events are working properly. Each function returns true if the
test passes and false if it fails. In main(), the individual functions are called with the
success/failure of the individual tests indicated. A tally of passes and failures could easily be
added (e.g., tests taken++ and tests passed++) and a summary provided (e.g., test -

passed out of test taken). The test functions themselves should write liberally to the
logfile in order to confirm that tests pass and, when they fail, help to figure out why.

Listing 4.65: Isolating test functions
? .

0 // Test f u cn t i on p r o t o t y p e s .
1 bool testClock_timing ()

2 bool testStepEvent ()

3

4 main () {

5 if (testClock_timing ())

6 puts (” Pass ”)

7 else

8 puts (” F a i l ”)

9

10 if (testStepEvent ())

11 puts (” Pass ”)

12 else

13 puts (” F a i l ”)

14 }
? '

An example of a testClock timing() function is shown in Listing 4.66. The function
creates a Clock object, with the timing aspects in the sleep() and split() calls starting
on line 6. If the split time is not 1 on line 13, then an error is logged and false is returned.
Otherwise, the function passes and true is returned. Note, func on line 19 is a built-in
constant string that holds the name of the calling function (i.e., “testClock timing()” in
this example).

4.6. Development Checkpoint #4 – Dragonfly Egg! 106

Listing 4.66: testClock timing()
? .

0 // Test the Clock c l a s s us ing second g r anu l a r i t y .
1 // (Note , f i n e r t imer g r anu l a r i t y shou l d be t e s t e d , too .)
2 bool testClock_timing (void) {

3 df:: Clock clock;

4

5 clock.delta(); // S t a r t time .
6 sleep (1); // Adjust to Mac/Linux /Windows .
7 int t = (int) clock.split() / 1000000; // About 1 second .
8

9 // Pr in t time to l o g f i l e f o r debugg ing .
10 LM.writeLog (” s p l i t t ime t i s %d”, t);

11

12 // See i f r epo r t ed 1 second as e xpe c t ed .
13 if (t != 1) {

14 LM.writeLog (” s p l i t t ime t i s %d”, t);

15 return false;

16 }

17

18 // I f we ge t here , t e s t has passed .
19 LM.writeLog (”%s pas sed .\ n”, __func__);

20 return true ;

21 }
? '

As a final note, be aware that writing good tests – tests that inform whether or not code
is working – takes time and skill, just like writing game engine code. The more you do, the
better you get. Similarly, interpreting test failures takes time and skill. For tests that fail,
additional work is involved in fixing the bugs they might be revealed. Make sure to re-run
failed test after fixing the bug to be sure it is really fixed! And keep such tests around for
future regression testing. All of this becomes easier with practice.

4.6 Development Checkpoint #4 – Dragonfly Egg!

Your Dragonfly development should continue!

1. Create the base Event class referring to the header file in Listing 4.51. Add Event.cpp

to the project and stub out each method so it compiles. Testing should primarily
ensure that it compiles, but make a stand alone program that sets (setType()) and
gets (getType()) the event type for thoroughness.

2. Create the derived EventStep class based on the header file in Listing 4.52. Add
EventStep.cpp to the project and stub out each method so it compiles. As for the
Event class, testing should primarily ensure that it compiles, but create test code to
be sure event types can be get and set for this derived class.

3. Add an event handler method to the Object class, based on Listing 4.60. Test by
creating a simple game object derived from the Object class (e.g., a Saucer) and
spawning (via new) several in a program. Define the class’ eventHandler() methods
to recognize a step event. Pass in both EventStep events and Events and see that

4.6. Development Checkpoint #4 – Dragonfly Egg! 107

they are recognized properly. Verify this with output messages to the screen and/or
logfile.

4. Create the WorldManager class based on the header file in Listing 4.57. Add World-

Manager.cpp to the project and stub out all methods, making sure the code compiles.

5. Write the bodies for WorldManager methods insertObject(), removeObject(),
getAllObjects() and objectsOfType(). Create a stand alone program that tests
that these methods work. Test by inserting multiple objects and removing some and
then all, verifying each method works as expected. Use messages written to either
the screen or logfile, both inside the methods and outside the WorldManager to get
feedback.

6. Write code to extend the Object constructor and destructor to add and remove itself
from the WorldManager automatically. Refer to Listing 4.61 and Listing 4.62 as
needed. Test by using the derived game objects (e.g., Saucers) and spawning (via
new) them in a program. Verify they are removed when deleted via delete for now.

7. Write theWorldManager markForDelete()method, referring to Listing 4.63 as needed.
Write the WorldManager update(), too, at this time since update() and markFor-

Delete() are easiest to test together. Test by spawning several derived game objects
(e.g., Saucers), then marking some of them for deletion. Calling update() should
see those Objects removed. Verify this with extensive messages to the screen and/or
logfile.

8. Add functionality to the GameManager run loop. This includes doing the following
once per game loop: 1) getting a list of all Objects from the WorldManager and
sending each Object a step event (see Listing 4.54), and 2) calling WorldManager
update().

At this point, it is suggested to review the Dragonfly code base thus developed. First,
to refresh the design and implementation done thus far. Second, to be sure code has been
integrated into a single engine and the full set of functionalities implemented have been
tested. If implementation has keep pace with the book, development should have come a
long way! A game programmer can write game code to:

1. Start the GameManager. The GameManager should start the LogManager and the
WorldManager, in that order.

2. Populate the game world. This means creating a class derived from Object (e.g., a
Saucer) and spawning one or more objects (via new). The class constructor for Object
has each instance add itself to the WorldManager. The Objects can set their initial
positions.

3. Run the GameManager (via run()). The GameManager executes the game loop with
controlled timing (using the Clock class). Each iteration, the GameManager gets the
list of game objects from the WorldManager, then iterates through the list, sending
each Object a step event.

4.6. Development Checkpoint #4 – Dragonfly Egg! 108

4. The GameManager also calls update() in the WorldManager, which iterates through
the list of all Objects marked for deletion, removing each of them via delete.

5. Objects handle the step event in their eventHandler() methods. The derived game
object (e.g., Saucer) should actually define the behavior. At this point, a game object
can “move” itself by changing its position to demonstrate functionality. Objects can
write messages (e.g., (x,y) position) to the screen or logfile to show behavior.

6. After some condition (e.g., a game object has moved 100 steps), the game can be
stopped by invoking GameManager setGameOver() method.

7. The engine can gracefully shut everything down by invoking GameManager shutDown().
This should shutdown the WorldManager and the LogManager, in that order.

For the game programmer, this means creating one or more derived game objects classes
(derived from Object), and one or more “games” (each with a separate main()) that can
be used to test, debug and demonstrate robust behavior from the engine.

The full set of the above functionality is a good start – the foundation of a game engine.
Put another way, the base code thus far is a Dragonfly egg∗ that, with the help of the rest
of this book, will hatch and grow into a fully functioning Dragonfly game engine.

Tip 14! Source code control. In developing Dragonfly (and most other software
projects of significant size), it is strongly urged to use a source code control (also
called version control) system. Source code control systems help mange changes
to computer programs, associating files by time and version names. While such
features are critical for development teams, they are often helpful for independent
developers, too, providing invaluable check pointing for working code. Checking
in working versions of Dragonfly, say Egg, can help by preserving working code if
future development breaks the code base. Similarly, source code control can provide
a backup in case code is lost (e.g., a disk failure). Local source code control systems
that do not back up over the network (e.g., RCS) should be periodically copied to
another location (alternate local storage or, better, offline to another machine or
cloud storage) in case of computer hardware failure.

∗ Did you know (#4)? Dragonflies start out their lives as eggs laid in water. A Dragonfly can lay as
many as 100,000 eggs. – “Frequently Asked Questions about Dragonflies”, British Dragonfly Society, 2013.

