/ .\ I A7
V000 T NN _JI1T17
riJdiri IIJIIJIIJIIIIIIIIJI

I_I I_I

Program a Game Engine from Scratch

Mark Claypool

Chapter 4 - Engine

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 10.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2025 Mark Claypool and WPI. All rights reserved.

Chapter 4
Engine

Introduction understood (Chapter 1), development environment setup (Chapter 2) and
tutorial complete (Chapter 3) means it is time start coding an engine! This chapter begins
with an overview of Dragonfly then proceeds with sections on the design and development
of each of the major game engine concepts and components.

4.1 Overview

Saucer: hit() Star: draw()
Hero: kbd() SE GObLE GameStart: eventHandler()

drawsString() getinput()
insertObject() DRAGONFLY moveObject()

loadSprite() onEvent()

Allocate memory File open/close
Clear display COLAPLIES AL A0t Get keystroke

Figure 4.1: Dragonfly architectural overview

Figure 4.1 depicts an overview of the Dragonfly game engine relative to other parts of

49

4.1. Overview 50

Table 4.1: Dragonfly Classes

Type Class Description
Box 2d rectangle
Vector 2d vector
Clock Timing support
Utility Music Store and play music
Sound Store and play sound effects
Frame 2d character image
Sprite Sequence of frames for animated image
Animation Control for animating Sprite
Event Base class for engine events
EventCollision Event generated solid objects collide
EventKeyboard Event generated when keyboard has input
Event EventMouse Event generated when mouse has input
EventOut Event generated when object goes outside world
EventStep Event generated each game loop
EventView Event generated when updating ViewObjects
Manager Base class for engine managers
DisplayManager Manager of the graphics display
GameManager Manager of the game loop
Manager InputManager Manager of player input (keyboard and mouse)
LogManager Manager of the logfile

ResourceManager Manager of resources (sprites, sounds, music)
WorldManager Manager of the game world

Object Base class for game engine objects
Obiect ViewObject View objects displayed on the Heads Up Display
] ObjectList List container for Objects

the system and game. The top layer, GAME CODE, depicts functionality that is handled
by the game programmer, the middle layer, DRAGONFLY, by the game engine and the
bottom layer, COMPUTER PLATFORM, by the operating system and computer hardware.

As discussed in Section 1.2, code in the GAME CODE layer provides specific game
functionality that is not, and often cannot, be handled by the game engine. For example,
for Saucer Shoot in Chapter 3.3, the Saucer interprets the action of a collision event in the
hit () method. This action is specific to this game, as a collision for a Saucer, or any other
object, in a different game could have very different results. Similarly, the Hero object must
decide what to do on a keyboard event in the kbd() method, where other games would
likely have different actions for different keyboard inputs.

Game engine code in the DRAGONFLY layer provides for functionality that is general
to all games made with this engine. In this way, the engine provides convenient game
functionality that makes it easier for the game programmer to develop the game and may
provide more efficient implementations in some cases. For Dragonfly, functionality for

-

- «a}:
e
.\

\

4.1. Overview 51

drawing characters on the screen, loading sprites into the engine, moving objects through
the game world, and triggering events from one object to another, provide core functionality
needed by the game programmer.

Low-level system functionality in the COMPUTER PLATFORM layer provides for hard-
ware-specific features, such as creating a graphics window, opening and closing files, allo-
cating memory and gathering keystrokes. A game engine, such as Dragonfly, may be ported
to different platforms (e.g., Mac) by re-writing platform-specific engine code. Once done,
in many cases, this allows the same game code to then run on multiple, different computer
platforms allowing a game to be easily ported.

Table 4.1 lists the Dragonfly classes for the core engine, grouped hierarchically and by
function. Utilities are designed to provide convenient, low-level functionality used by many
other classes. Events convey actions in the game engine to appropriate objects. Managers
are responsible for the different functionalities of the game engine. Game objects, with some
support classes, are managed by the game engine, with some specialized classes for custom
displays (e.g., a “heads-up” display, or user interface buttons). The scene graph organizes
Objects in the world for more efficient management and rendering.

s

Ye

5
s

4.2. Managers 52

4.2 Managers

Managers are the support systems for game engines, handling crucial tasks. This includes
handling input, rendering graphics, logging data, managing the game world and game ob-
jects and more. Logically, the different functions can be broken up into different managers.
The main class, Manager, is not instantiated. Instead, it serves as a base class for all derived
game engine managers. Refer to Table 4.1 on page 50 for details.

The interface for the Dragonfly Manager class is shown in Listing 4.1. The Manager class
provides startUp() and shutDown() methods, allowing the game programmer to control
initialization and termination of all derived manager objects. For the base Manager, in
Manager.cpp the startUp() sets is_started to true and shutDown() sets is_started
to false. The method isStarted() allows for a query to check if the manager has been
successfully started (via startUp()). As this is the base class, in Manager, the methods for
starting up and shutting do not do any “real” work — instead just manipulating the is_-
started boolean variable. The method setType() sets the private attribute type to the
name "Manager". The method is protected since only the base class and derived classes
are allowed to change a manager’s type (typically, this is done in the constructor for each
derived Manager).

Listing 4.1: Manager.h

ol namespace df {
2| class Manager {

i| private:

5 std::string m_type; // Manager type identifier.
6 bool m_is_started; // True when started successfully.

8| protected:
9 // Set type identifier of Manager.
10 void setType(std::string type);

12| public:
13 Manager () ;
14 virtual ~Manager () ;

16 // Get type identifier of Manager.
17 std::string getType() const;

| // Startup Manager.
200 // Return 0 if ok, else negative number
21 virtual int startUp();

231 // Shutdown Manager
24 virtual void shutDown () ;

26| // Return true when startUp () was executed ok, else false.
27 bool isStarted () const;
28| };

300y // end of namespace df

s

Ye

5
s}

4.2. Managers 53

Tip 3! Naming in Dragonfly. Dragonfly uses the following naming convention:
classes always begin with an upper case letter (e.g., Manager), single word variables,
methods and functions use lower case (e.g., distance()), classes and methods that
are more than one word use upper case letters without underscores to separate
words (e.g., isStarted(), also known as “camel case”), variables use underscores
between words (e.g., is_started, also known as “snake case”), and class attributes
are prefixed with an “m_” (e.g., m_type), with the name indicating a “member”
variable.

Line 0 of Listing 4.1 defines the Dragonfly namespace using the df: : tag. This requires
code outside of the namespace (e.g., game code) to use df : : to access elements inside the
namespace (e.g., setSolidness (df::SPECTRAL)). Typically, large, 3rd-party libraries (such
as a game engine) use namespaces to help developers avoid conflicts in names their own
code may use with names the libraries use. The Dragonfly namespace is meant to prevent
potential name conflicts with game code.

Note, for brevity in all future Listings in this book (with the exception of Logfile.h),
the Dragonfly namespace df:: is not shown, but it does appear in the actual engine .h
files.

Tip 4! Dragonfly header files. The Dragonfly header files (.h) for all
engine classes and utilities are available for download at the book Web page
(http://dragonfly.wpi.edu/book). These headers are also shown in the Appendix
(page 279), provided in alphabetic order. These header files reveal the design of the
engine, providing the exact methods and attributes that need to be implemented.
Note, however, that these header files represent Dragonfly in its final, fully imple-
mented, full-featured form. For development, the recommended path is to build the
header files (and engine) by hand following the sections in Chapter 4 in order.

Many managers depend upon each other, so the startup order of individual managers
matters. For example, a logfile manager is often needed first since all the other managers
write log messages upon startup, either noting successful startup in the logfile or reporting
errors in the logfile when there are problems. Or, a display manager may need memory
allocated for sprites, so a memory manager would need to be invoked before the display
managers.

In addition, unlike many game objects, it often makes sense to have only one instance
of each manager. For example, having two display managers simultaneously writing to
the graphics card/display device may not make sense nor even be supported by the hard-
ware/operating system. Similarly, having two independent managers handle input from the
keyboard and mouse may yield undesirable (or at least unpredictable) results.

‘v*:’{._

4.2. Managers 54

Managers are generally global in scope because the service the manager provides may
be sought in many places in both game and engine code. For example, the engine code
and game code may both write messages to the logfile via the LogManager, and both the
engine code and game code may draw characters on the screen via the DisplayManager.
Given this, a natural inclination may be to make the manager instances global variables, as
depicted in Listing 4.2.

Listing 4.2: Managers declared as global variables

o // Outside main(), these are global wvariables.
df : :DisplayManager display_manager;
df : : LogManager log_manager;

0N

main () {

6| }

While declaring managers as global variables does provide for global scope, it does not
give control over the order of invocation. The order of instantiation of global variables is
determined by the compiler and not by the program order. For example, if the code in
Listing 4.2 is compiled and run, the log manager may be instantiated first and then the
display manager or vice versa. Moreover, using global variables from the engine — say, if
DisplayManager wanted to write to the logfile — would require the game programmer to use
the same names as expected by the engine, making the game code more brittle.

4.2.1 Singletons

The singleton design pattern can be used for the game engine manager to solve all the above
problems: 1) the singleton restricts instantiation of a class to one, and only one, object;
2) the singleton allows control of the order of manager initialization for dependency cases
where the order matters; and 3) the singleton allows for global access.

In order to restrict instantiation to one (and only one) instance, the singleton class
needs to disallow typical operations that enable object creation from a class. In particular,
access must be denied for public access to the constructor, copy and assignment operators —
otherwise, a programmer can use them to make additional instances of the class. Restricting
creation is done by making the specific operations private to the class.

In order to instantiate a singleton class in C++, the keyword static is used as a modifier
to the variable representing the one instance of the class. Remember, static variables retain
their value even after the function terminates — in effect, the lifetime extends across the
entire run of the program. However, a static variable is not allocated until the function is
first called. This last feature allows explicit control as to when the manager is started up.
Also remember, the keyword static in front of a method or function is quite different. A
static method does not require an instance of the class to use it, and a static function
(or a static global variable) has a scope that restricted to the .cpp file it is declared in.

Listing 4.3 depicts the class template for a singleton class.

Listing 4.3: A Singleton class
()(// Note, this would typically be defined in Singleton.h. 1

s

Ye

5
s

4.8. Logfile Management 55

class Singleton {

private:
Singleton () ; // No constructing .
Singleton (Singleton const ©); // No copying.

void operator=(Singleton const &assign); // No assigning.
public:

static Singleton &getInstance (); // Return instance.
+;

// Return the one and only instance of the class.
// Note, this would typically be defined in Singleton.cpp.
Singleton &Singleton::getInstance () {
// Note, a static wvariable persists after method ends.
static Singleton single;
return single;

}

While the singleton class guarantees there will be one and only one instance of the class,
when a manager is actually instantiated (the first time getInstance() is called for that
class), there can sometimes be a lot of work to be done. Thus, most of the initialization work
for any manager is done in the startUp() method, called after the first getInstance()
call.

Each specific manager class (e.g., DisplayManager) inherits from the base Manager class
using the singleton template. The virtual methods startUp() and shutDown() are defined
in the derived class and are specific to that particular manager. For example, the logfile
manager might open the logfile for writing, while the display manager might ready the
display for graphical output.

4.3 Logfile Management

If a game is working well, meaning all game engine code and game programmer code is
doing what it is supposed to, all meaningful output typically goes to the screen in the
form of game actions — characters moving, bullets flying, menus popping up, etc. However,
during development this is often not the case, as code (even game engine code) can have
bugs, or confirmation of working code is needed before proceeding. While debuggers are
essential for effective programming, many game programmers do not have the luxury of
having the source code for the game engine so a debugger cannot trace through the engine
code. Moreover, some bugs are timing dependent meaning they only happen at full speed
or are caused by a long sequence of events, making them hard to trace by a debugger.

What is helpful in these cases is a game engine that provides meaningful output as to
the workings (or not) of the engine, and also provides a flexible, easy-to-use mechanism for
a game programmer to get output. However, standard methods of printing to the screen
can often interfere with the game itself or are not even possible when a display device
is in graphics mode. In order to get around this limitation, logfiles are often used, where
descriptive messages from the engine are written to a file, and the engine provides a flexible,
easy-to-use mechanism for their own messages. This is the essence of the LogManager, often
the first manager developed since all other engine components make use of it.

For base functionality, upon startup the LogManager opens up the logfile, making sure

-
» 0%
N,
.
e\

\

4.8. Logfile Management 56

writing is allowed to the appropriate directory. Advanced features could allow appending
or overwriting of previous logfiles, name the logfile with a timestamp, and check if there is
sufficient disk space for normal operations. Upon shutdown, the logfile is closed, effectively
flushing any outstanding data to the disk.

For attributes, the LogManager only needs a file structure (e.g., FILE *) for access to
the logfile.

4.3.1 Variable Number of Arguments

The most frequently used LogManager method is to support writing general-purpose mes-
sages to the logfile — whether the messages come from other parts of the engine or from
the game programmer — via a writeLog() method. For example, the game programmer
may want to write a string such as “Player is moving”, which is effectively one argument
to writeLog(). Or, the game programmer may want to write “Player is moving to (x,
y)” where x and y are float variables that are passed in. In other words, the number of
arguments that writeLog() supports is not known ahead of time, but can be one or more.

A function that supports a variable number of arguments is depicted in Listing 4.4.
Note the “...” characters in the parameter list for the function. Handling a variable number
of arguments in this way requires #including the system header file stdarg.h, and the
system header file stdio.h is needed for fprintf (). In the body of the function, a va_list
structure is created, then initialized with arguments in the va_start command, provided
with the name of the last known argument (fmt, in this case). At this point, the function
is ready to call a printf () to produce output, but instead of a fixed string, the va_list
structure has the formatting parameters, so viprintf () is used instead. When finished,
the va_end () must be called to clean up the stack.

Listing 4.4: Function taking variable number of arguments

#include <stdio.h>

#include <stdarg.h>
void writeMessage (const char *fmt, ...) {
fprintf (stderr, " Message: ");

va_list args;

va_start (args, fmt);
viprintf (stderr, fmt, args);
va_end (args) ;

Note, Listing 4.4 uses standard error (stderr), which typically defaults to the console
Window, while a game engine (e.g., Dragonfly) will usually write to a file. The code can be
adjusted, accordingly, to use a file.

4.3.2 Human-friendly Time Strings (optional)

For a long running game, it is often helpful to have timestamps associated with messages
in the logfile. These times can be in “game time”, such as game loop iterations, or in “wall-
clock time” corresponding to the actual time of the day. Dragonfly does both, displaying a
human-friendly time and game loop iteration in front of each message.

s

Ye

5
s

4.8. Logfile Management 57

An easy way to associate a time with a written message is to have a function, say
getTimeString(), that writeLog() calls to get a string with a timestamp. The get-
TimeString () method uses the time () system call, which returns the number of seconds
since January 1, 1970. In order to turn that big number into something that is easier
for humans to read, the localtime () system call converts the seconds into calendar time,
allowing extraction of hours, minutes and seconds. Listing 4.5 depicts the getTimeString()
method. Note, no error checking is provided for the system calls.! The function sprintf ()
on line 12 is similar to printf (), but instead of printing to stdout, sprintf () prints to a
string,? in this case time_str.

Listing 4.5: Function to provide human-readable time string

// Return a nicely—formatted time string: HH:MM:SS
char *getTimeString () {

s

// String to return, made ‘static
static char time_str [30];

so persists.

// System calls to get time.

time_t now;

time (&now) ;

struct tm *p_time = localtime (&now) ;

// ‘027 gives two digits, ‘%d’ for integers.
sprintf (time_str, "%02d:%02d:%02d",

p_time -> tm_hour,

p_time -> tm_min,

p_time -> tm_sec);

return time_str;

A complementary message in the logfile is the “game clock” — the number of iterations
of the game loop — obtained from the GameManager. This can be displayed as an integer
pre-pended to the log message. See the GameManager in Section 4.4.4 on page 4.4.4 for
details.

The presence of both the time string and the game clock in the logfile can be setup to be
controlled by the game programmer by having the LogManager keep two boolean variables,
log time_string and log step_count, which, if true, pre-pend the time string or game
clock, respectively, to the game programmer’s log message.

While the printing of time has been presented in the context of the logfile, functions
like getTimeString() are useful beyond the LogManager class and do not access any at-
tributes of the class. As such, they should be placed in a file called utility.cpp (with a
corresponding utility.h). Other functions that provide utility services, but are not part
of any class definitions, will reside in utility.cpp as they are created.

L All system calls should be error-checked, and errors handled appropriately, in case they fail.
2The ‘s’ in front of printf () is for ‘string.’

s

Ye

5
s

4.8. Logfile Management 58

4.3.3 Flushing Output

Generally, writing data to a file does not immediately write the data out to the disk.
The operating system typically buffers data, writing when the device is idle or when in-
ternal memory buffers are filled. Such buffering generally improves overall system perfor-
mance, but can cause unexpected output (or, more precisely, lack of it) if a program, say
a game engine, crashes before all data is written. For example, if the line log manager.-
writeLog("Doing stuff") is executed and then the program crashes (e.g., from a segfault),
the string “Doing stuff” may not appear in the logfile even though that line has been exe-
cuted. This can make it hard to trace where, exactly, the error (in this case, the error that
caused the segfault) might have occurred.

To force the operating system to immediately write out buffered data to the disk, the
fflush() system call can be used after each write. Used during development, this helps
provide complete logfiles even during system crashes. Note, this does decrease efficiency
(speed) somewhat, so might not be used when game development (or game engine devel-
opment) is complete. Thus, the LogManager can provide the game programmer with an
option to flush the logfile after each disk, or not.

The attributes and methods for the LogManager can now be described in Listing 4.6.
The destructor closes the file if m_p_f is not NULL.

Listing 4.6: LogManager attributes and methods

private:
bool m_do_flush; // True if fflush after each write.
FILE *m_p_f; // Pointer to logfile structure.
public:

// If logfile is open, close it.
“LogManager () ;

// Start up the LogManager (open logfile ”dragonfly.log”).
int startUpQ);

// Shut down the LogManager (close logfile).
void shutDown () ;

// Set flush of logfile after each write.
void setFlush(bool do_flush=true);

// Write to logfile. Supports printf() formatting.
// Return number of bytes written , —1 if error.
int writelog(const char *fmt, ...);

4.3.4 Conditional Compilation

Once implemented, using the newly-minted LogManager throughout the engine (or in game
code) will quickly reveal a problem — the LogManager header file, LogManager .h, likely gets
included by the compiler pre-processor multiple times, resulting in compiler warnings about
“redeclaration of class LogManager”. In order to fix this, directives to the pre-processor can
limit class (and other) definitions to be included only once by having code only compiled

-
» 0%
N,
.
e\

\

N =

Gl W

4.8. Logfile Management 59

during certain conditions. For the LogManager (and other Dragonfly header files), this
is done by using an #ifndef wrapper and a unique identifier. Consider the sample code
in Listing 4.7. When foo.h is seen by the compiler the first time, FILE_FOO_SEEN is not
defined, so the pre-processor defines it in the next line and proceeds to parse and processes
the foo file (and defining class Foo), normally. The next time foo.h is seen by the pre-
processor, FILE FOO_SEEN is already defined so the contents of the foo file are not included,
avoiding a duplicate definition of class Foo.

Listing 4.7: Once-only header files

// File foo.h
#ifndef FILE_FOO_SEEN

#define FILE_FOO_SEEN

// The entire foo file appears next.
class Foo {};

#endif // !FILE_.FOO_SEEN

Such conditional compilation directives are often used for platform-specific parts of code.
Listing 4.8 shows a code stub that would compile Linux-specific code if LINUX was defined
(say, with a -DLINUX flag to a g++ compiler), or Windows-specific code if either WIN32 or
_WIN64 was defined.

Listing 4.8: Conditional compilation for platform-specific code

#if defined (_WIN32) || defined (_WIN64)
// Windows specific code here.

#elif defined (LINUX)

// Linux specific code here.

#endif

Note, there is no real functional difference between #ifdef NAME and #if defined (NAME),
but #ifdef can only use a single condition while #if defined can use compound conditions
(as in the example in Listing 4.8).

When using #define directives in Dragonfly for literal replacement (e.g., for the engine
version number), the convention is to prefix names with a DF_ (e.g., DF_VERSION). This
naming convention is to reduce the risk of potential namespace conflicts between the engine
programmer and the game programmer.

When using conditional compilation for header files, the convention is for system utili-
ties to use underscores before and after the name (e.g., STRING H_), while user code (game
code) should never use initial/post underscores. This naming convention is to avoid po-
tential namespace conflicts between the engine developer and the game programmer. For
Dragonfly, a double initial underscore and double post underscore is used.

s

Ye

5
s

4.8. Logfile Management 60

4.3.5 The LogManager

The complete header file for the LogManager is shown in Listing 4.9. Notice the #ifndef
and #define statements at the top for conditional compilation.?

The #include <stdio.h> on line 6 is for the FILE variable, m_p_f. LOGFILE_NAME on
line 13 provides the name of the logfile, “dragonfly.log”.

The methods in the private section that allow implementation of the singleton pattern.
The attributes provide the file descriptor and whether or not to flush output after each write.
Whether flushing is done or not is specified in the setFlush() method, but defaults to not
flushing (m_do_flush is false).

The LogManager constructor should set the type of the Manager to “LogManager”
(i.e., setType("LogManager"). As in most classes, the constructor should also initialize all
attributes, in this case m_p_f to NULL and m_do_flush to false.

While startUp() and shutDown() are defined in the Manager class, they are redefined
in the LogManager to open the logfile and close the logfile, respectively. Manager startUp ()
and Manager shutDown () should be called from LogManager startUp() and LogManager
shutDown (), respectively. Remember, in C++ even if a method is defined in a derived class
(e.g., startUp() in the LogManager), the parent method can still be called explicitly (e.g.,
Manager: :startUp()).

Listing 4.9: LogManager.h

// The logfile manager.

#ifndef __LOG_MANAGER_H__
#define __LOG_MANAGER_H__

// System includes.
#include <stdio.h>

// Engine includes.
#include " Manager.h"

namespace df {

const std::string LOGFILE_NAME = "dragonfly.log";
5| class LogManager : public Manager {

private:

LogManager () ; // Private since a singleton.
LogManager (LogManager consté&); // Don’t allow copy.

void operator=(LogManager const&); // Don’t allow assignment.

bool m_do_flush; // True if flush to disk after each write.
FILE *m_p_f; // Pointer to logfile struct.

public:

// If logfile is open, close it.
“LogManager () ;

// Get the ome and only instance of the LogManager.

3For brevity, subsequent Dragonfly header files are not shown with #ifndef directives.

4.8. Logfile Management 61

static LogManager &getInstance ();

// Start up the LogManager (open logfile ”dragonfly.log”).
int startUpQ);

// Shut down the LogManager (close logfile).
void shutDown () ;

// Set flush of logfile after each write.
void setFlush(bool do_flush=true);

// Write to logfile. Supports printf() formatting of strings.
// Return number of bytes written , —1 if error.
int writelLog(const char *fmt, ...) const;

Y // end of namespace df
| #endif // __LOG.MANAGER_H_.

Tip 5! Writing logfile messages. When calling writeLog(), it is often helpful
to include information on from where the call is being made. This is especially
important when Dragonfly gets large and there are lots of logfile messages written.
A good convention to follow is to include the class name and the method name as
part of the log message. An example is shown in Listing 4.10, with the corresponding
expected output at the bottom of the Listing starting on line 19.

Listing 4.10: Example of using the LogManager writelog()

// Get singleton instance of LogManager.
df : : LogManager &log_manager = df::LogManager::getInstance ();

// Ezample call with 1 argument.
log_manager .writeLog (

"DisplayManager::startUp(): Current window set”);

// Ezample call with 2 arguments.
log_manager .writeLog(

"WorldManager::isValid (): WorldManager does not handle '"%s'",
event_name.c_str());

// Ezample call with 8 arguments.
log_manager .writeLog (

"DisplayManager::startUp(): max X is %d, max Y is %d”,
max_x, max_y);

// Sample logfile output:
LogManager started
DisplayManager ::startUp(): Current window set

4.8. Logfile Management 62

22| WorldManager :: isValid () : WorldManager does not handle 'mud event'’
23| DisplayManager ::startUp(): max X is 80, max Y is 24

Note, for code readability, from here on, a macro is created for each derived manager,
providing a two letter acronym for accessing the singleton instance of each manager. For
example, Listing 4.11 shows the definition for the LM acronym, which should be placed in
the LogManager.h header file. With this in place, a game programmer could then invoke
LM.writeLog() without needing to call getInstance().

Listing 4.11: Two-letter acronym for accessing LogManager singleton

o // Two—letter acronym for easier access to manager.
1| #define LM df::LogManager ::getInstance ()

4.3.6 Controlling Verbosity (optional)

Logfile messages can be invaluable for debugging, performance tuning or verifying that
engine code or game code is working properly. However, logfiles can also be “noisy,” with
many, many innocuous lines of information hiding the ones that may offer true value. This
is especially true of messages that are printed each step of the game loop (typically, 30
times per second), or for messages printed each step of a loop that iterates through all
game objects!

While messages can be removed to decrease some of this noise, sometimes messages are
useful during later debugging and take time to put back into place. So, instead of removing
messages what is often better is to control the verbosity level of messages written to the
log — with low verbosity, only essential messages are printed, while with high verbosity, all
messages are printed. One way to do this is to have an explicit verbosity setting, depicted in
Listing 4.12, via an attribute named log_level, with get/set methods, in the LogManager.
Verbosity is controlled by changing the log level, even dynamically during run time, with
logfile messages only written out when the LogManager log level is greater than or equal to
that of the message.

Listing 4.12: Controlling verbosity with log level

// (attribute of LogManager)
private:
int log_level; // Logging level.

// (Modify writeLog to take log level as a parameter.)

// Write to logfile.

// Only write if indicated log level >= LogManager log level.

// Supports printf() formatting of strings.

// Return number of bytes written (excluding pre—pends), —1 if error.
void LogManager::writeLog(int log_level, char *fmt, ...)

// Only print message when verbosity level high enough.
if log_level > this.log_level then

va_list args

end if

s

Ye

5
s}

4.8. Logfile Management 63

In order to avoid repeating code, the version of writeLog() without the log level
should just invoke the writeLog() in Listing 4.12, providing INT_MAX, the maximum integer
(found in limits.h), as the log level.

Tip 6! Naming global variables. Global variables should be used sparingly.
However, when they are used, given that their declarations do not appear in the
local block of code (e.g., not in the method or class body), it is helpful to have a
naming convention that indicates which variables are global variables. A suggestion
is to use the prefix ‘g ’, with ‘g’ standing for “global”. Also, the use of extern, while
not strictly needed for scoping, is helpful to indicate to the programmer that the
variable is declared outside the block of code (e.g., see extern int g verbosity in
Listing 4.12).

The method of controlling verbosity in Listing 4.12 is effective but does have a bit
of additional overhead, notably a comparison check against the global variable holding the
verbosity level for each call. It is not likely this overhead is onerous, but it can be significant,
particularly for messages written each step and for each iteration of an object list.

An alternative method is to use conditional compilation, as described in Section 4.3.4
(page 58), with #ifdef directives used to decide whether or not to compile in logfile mes-
sages. An example is shown in Listing 4.13.

Listing 4.13: Controlling verbosity with conditional compilation

o #ifdef DEBUG_1

i| LM.writeLog (" WorldManager:: markForDelete(): deleting object %d”,
2 p_o -> getId());

3| #endif

The first line indicates the following lines (that actually write the logfile message) are to
be compiled in only if DEBUG_1 is defined. The developer can define DEBUG_1 when testing
code, looking for bugs, verifying functionality and so on. When the game is ready to ship,
DEBUG_1 can be left undefined and the code is not compiled into the game. This approach
has none of the overhead in Listing 4.12 when messages are not to be written since the
messages to write to the logfile are not included at all. As a downside, code can be slightly
less readable if there are many #ifdef messages.

4.3.7 Development Checkpoint #1!

At this point, development of Dragonfly should commence! The setup from Chapter 2, used
for the tutorial, can be used to setup the development environment for your engine. Steps:

1. Setup your development environment, as specified in Chapter 2. Successfully compil-
ing the first tutorial game in Section 3.3.1 on page 15 will ensure that the necessary
tools are in place and configured.

‘«:’{.,

4.3.

8.

Logfile Management 64

. Discard the pre-compiled Dragonfly libraries and header files from step 1 and prepare

a directory structure for your own engine development.

. Create a Manager base class, both Manager.h and Manager.cpp. See Listing 4.1 for

details on the class definition.

. Create a LogManager derived class, inheriting from the Manager class. Use Listing 4.9

as a reference.

. Implement a writeLog() function, initially, not part of the LogManager. Have

writeLog() just produce output to the screen (standard output). Test thoroughly,
with no arguments, single arguments and multiple arguments. Be sure to test with
different data types (ints, floats, etc.), too.

. Move writeLog() into the LogManager class as a method. In game. cpp, have #include

"LogManager.h" at the top of the file to include the class definition. Then, instanti-
ate (via getInstance()) and start up (via startUp()) the LogManager. Check the
return values to ensure the calls are working.

Test with various calls to writeLog() in the LogManager are working, testing single
and multiple arguments with different types. Verify that the expected output appears
in the logfile, “dragonfly.log”.

Implement and test any optional elements (e.g., getTimeString()), as desired.

Make sure all the code is working thoroughly and is clearly written (indented and com-
mented). As suggested earlier, the LogManager is used heavily during development, both
for engine code and for game code, and needs to be robust and reliable before moving
forward. This is true of each Development Checkpoint — make sure code is debugged and
tested thoroughly before proceeding!

Tip 7! Testing. Testing is critical for complex software development. A good
software development process will have testing proceed hand-in-hand with coding.
Designing test cases and implementing and maintaining code that runs tests on an
existing code base will pay-off in the long run. See Section 6.1 on page 258 for more
details, including a possible unit testing framework that may be of use.

s

* ol

8.}

5%

Ye

S S

4.4. Game Management 65

4.4 Game Management

At a high level, “managing the game” is the job description of the entire game engine.
Game programmers (and players) often think of this as “running the game”.

4.4.1 The Game Loop

The game manager “runs”’ the game, doing so by repeating the same basic set of actions
in a loop (the game loop), over and over. A 10,000 foot view of the game loop is presented
in Listing 4.14. Each iteration of the game loop is called a “step” (or a “tick”, as in the
tick of a clock). During one step, the game loop: 1) gets input, say from the keyboard or
the mouse (these are player actions in the game); 2) updates the game world state to move
objects around, generate needed actions, respond to the input; 3) draws a new image (the
current scene) on the graphics buffer; and 4) swaps out the old image for the new image.
This process is repeated in the loop until the game is over.

Listing 4.14: The game loop

while (game not over) do
Get input // e.g., from keyboard/mouse
Update game world state
Draw current scene to back buffer
Swap back buffer to current buffer
end while

Note that the loop in Listing 4.14 runs as fast as it can, updating and drawing the game
world as fast as the computer can get through the code. Early game development efforts
were often targeted for a machine with a specific speed, where the time to execute a loop
was known and objects could be moved an appropriate amount of time each loop. Of course,
running the same game code on a faster machine (as would happen when computer speeds
improved) meant the game would run faster! Moreover, if a step took more or less time
than expected, the update rate of game objects would vary, causing them to move faster or
slower.

In order to rectify this problem, the game loop is enhanced with loop timing information,
shown in Listing 4.15. In this version of the game loop, one step of the loop is expected to
take a fixed amount of time — a TARGET_TIME (e.g., 33 milliseconds). So, the time to execute
the first 4 instructions is carefully measured and, at the end of the loop on line 6, the game
is put to sleep (effectively, doing nothing) for whatever is remaining of the TARGET_TIME.

Listing 4.15: The game loop with timing

while (game not over) do
Get input // e.g., keyboard/mouse
Update game world state
Draw current scene to back buffer
Swap back buffer to current buffer
Measure loop_time // i.e., how long above steps took
Sleep for (TARGET_TIME - loop_time)
end while

s

Ye

5
s

4.4. Game Management 66

An important decision is how long TARGET TIME should be. Setting it too high will
result in the game loop progressing slowly, limiting animation rates and game update rates
— the game will look less “smooth” and will feel sluggish to the player. Setting it too
low will result in the game loop progressing rapidly, giving a smooth, responsive game,
but may unnecessarily burden the computer and cause problems, such as visual glitches or
unintended game slowdowns, if the game world is too complicated to be fully updated in
one step.

Guidelines for setting TARGET TIME can be drawn from video. Video performance is
often reported in units of frame rate, the rate at which video images are updated on the
screen. The units are typically frames per second (f/s). “Full motion” video, the rate seen
in movies or television, is approximately 30 f/s. Frame rates higher than this provides little
benefit to visual quality, while frame rates lower than this look “jerky” for some kinds of
video content. Considering the rendered game images as video images, the game loop rate
is analogous to video frame rates, provided guidance on the game loop rates. Notably, a
reasonable expectation is to update the game screen 30 times per second — equivalently,
setting TARGET_TIME to 33 milliseconds.

4.4.2 Measuring Computer Time

In order to step through the game loop 30 times per second, the time for one loop itera-
tion must be measured precisely. Modern operating systems provide several different ways
(system calls) to measure time. For example, on Unix systems, the time () call returns the
number of seconds since January 1st, 1970. Subsequent system calls can use that number
to extract the hours, minutes and seconds or even the month, day, year. However, the
resolution of the time () system call is only 1 second, meaning it is too coarse to provide
timing on the order of the milliseconds needed for the game loop.

Fortunately, modern computer processors have high-resolution timers provided by hard-
ware registers that count processor cycles, providing resolutions in the nanoseconds. For
instance, a 3 GHz processor increments the timer register 3 billion times per second, pro-
viding a resolution of 0.3 nanoseconds — plenty of precision for the game loop! The actual
system calls to access these high-resolution timers varies with platform. Windows uses
QueryPerformanceCounter () to get the timer value, and QueryPerformanceFrequency ()
to get the processor cycle rate. Xbox 360 and PS3 game consoles use the mftb (which
stands for “move from time base”) register to obtain the timer value, with the hardware
having a known processor cycle time. Linux uses clock_gettime () to get a high-resolution
time value (needing to be linked in with the real-time library, -1rt, when compiling).

In order to measure the time the game loop takes (everything between line 1 “Get input”
and line 4 “Swap” in Listing 4.15), the method in Listing 4.16 is used. The method starts
by recording the time (storing it in a variable). Next, the tasks to be timed are run (for a
game loop, this is input, update and so forth). When the tasks are done, the time is again
recorded. The elapsed time is obtained by subtracting the “before” time from the “after”
time.

Listing 4.16: Method to measure elapsed time

Record before time
Do processing stuff // e.g., get input, update

s

Ye

5
s

0(#include <Windows .h>

4.4. Game Management 67

Record after time
Compute elapsed time // after — before

For Linux, Listing 4.17 provides a code fragment to compute the elapsed time of a block
of computation. Note, in this example, the units for elapsed time are in microseconds,
which is often used for timing in game engines, but it could easily be adjusted to seconds
or milliseconds. For compilation, the system header file <time.h> is needed for the timing
routines and -1rt is needed to link in the real-time library. The timing function, clock_-
gettime (), fills in the components of a timespec structure, which includes fields for seconds
(tv_sec) and nanoseconds (tv_nsec). Computing elapsed time is done by converting the
seconds and nanoseconds to microseconds, and subtracting the initial value from the final
value.

Listing 4.17: Measuring elapsed time in Linux

#include <time.h> // Compile with —Irt

struct timespec before_ts, after_ts;

clock_gettime (CLOCK_REALTIME, &before_ts); // Start timing.
// Do stuff ...

clock_gettime (CLOCK_REALTIME, &after_ts); // Stop timing.

// Compute elapsed time in microseconds.

long int before_msec = before_ts.tv_sec*x1000000 + before_ts.tv_nsec/1000;
long int after_msec = after_ts.tv_sec*1000000 + after_ts.tv_nsec/1000;
long int elapsed_time = after_msec - before_msec;

For Mac, the system call clock_gettime() does not exist (nor does the rt library).
Instead, the system call gettimeofday() (located in <sys/time.h>) should be used, as
shown in Listing 4.18. A call to gettimeofday() fills a struct timeval with the number
of seconds and microseconds.

Listing 4.18: Measuring elapsed time in Mac OS

#include <sys/time.h>

struct timeval before_tv, after_tv;

gettimeofday (&before_tv, NULL); // Start timing.
// Do stuff ...

gettimeofday (&after_tv, NULL); // Stop timing.

// Compute elapsed time in microseconds.

long int before_msec = before_tv.tv_sec*1000000 + before_tv.tv_usec;
long int after_msec = after_tv.tv_sec*1000000 + after_tv.tv_usec;
long int elapsed_time = after_msec - before_msec;

For Windows, the system call needed is GetSystemTime () (located in <Windows.h>) is
used, as shown in Listing 4.19. A call to GetSystemTime () fills a SYSTEMTIME structure
with the number of minutes, seconds, and milliseconds.

Listing 4.19: Measuring elapsed time in Windows

wt

4.4. Game Management 68

SYSTEMTIME before_st, after_st;
GetSystemTime (&before_st) ;
// Do stuff ...

GetSystemTime (&after_st);

// Compute elapsed time in microseconds.

long int before_msec = (before_st.wDay * 24 x 60 * 60 * 1000000)
(before_st .wHour * 60 *x 60 * 1000000)
(before_st .wMinute * 60 * 1000000)
(before_st .wSecond * 1000000)
(before_st.wMilliseconds * 1000) ;

long int after_msec = (after_st.wDay * 24 x 60 * 60 * 1000000)
(after_st.wHour * 60 * 60 * 1000000)
(after_st.wMinute * 60 * 1000000)
(after_st.wSecond * 1000000)
(after_st.wMilliseconds * 1000) ;

long int elapsed_time = after_msec - before_msec;

+ o+ 4+ +

+ + + +

4.4.3 The Clock Class

It is helpful for both the game engine and the game programmer to have a class that provides
convenient access to high-resolution timing — the Clock class. Listing 4.20 provides the
header file for the Clock class.* The clock functions as a sort of “stopwatch”, so the time is
stored in the variable previous_time, initialized to the current time when a Clock object is
instantiated. A call to the method delta() returns the elapsed time (in microseconds) and
resets previous_time to the current time. A call to the method split () returns the time
(in microseconds) since the last delta() call, but does not change the value of previous_-
time. The constructor should set previous_time to the current time, and both delta()
and split() can be implemented using Listing 4.17, 4.18, or 4.19 (as appropriate to the
development platform), as a reference.

Listing 4.20: Clock.h
// The clock, for timing (such as in the game loop).

class Clock {

private:
long int m_previous_time; // Previous time delta () called (in microsec).

public:

// Sets previous_time to current time.

Clock () ;

// Return time elapsed since delta() was last called, —1 if error.

// Resets previous time.
// Units are microseconds .
long int delta();

// Return time elapsed since delta() was last called, —1 if error.

“Note, the conditional #ifdef directives described in Section 4.3.4 are not shown.

4.4. Game Management 69

=
~

// Does not reset previous time.
18] // Units are microseconds.

19 long int split() const;

20| };

With a Clock class for timing, the last missing piece for providing timing control in the
game loop is the ability to sleep (line 6 of Listing 4.15). Linux and Mac provide the sleep()
system call, but it has only seconds of resolution, meaning it will not allow the game engine
to sleep for, say, 20 milliseconds. Since game loop timing needs milliseconds of resolution,
so does an appropriate sleep call.

On Linux and Mac, high-resolution sleeping can be done with nanosleep () which sleeps
for a given number of nanoseconds.” A #include <time.h> is needed for nanosleep().
The system call nanosleep() takes in a pointer to a struct timespec that has the
amount of seconds plus nanoseconds to sleep. The example in Listing 4.21 shows a call
to nanosleep() for 20 milliseconds.

Listing 4.21: nanosleep() example for Linux and Mac
// Sleep for 20 milliseconds .
struct timespec sleep_time;
sleep_time.tv_sec = O0;
sleep_time.tv_nsec = 20000000;
nanosleep (&sleep_time, NULL);

On Windows, sleeping can be done with Sleep() which sleeps for a given number
of milliseconds. A #include <Windows.h> is needed for Sleep(). In order to obtain a
millisecond resolution using Sleep(), the system call timeBeginPeriod(1) needs to be
called once, when the game engine starts, to set the timer resolution to the minimum
possible. The system call timeEndPeriod(1) is called when the game engine exits to clear
the initial request for a minimal timer resolution. Both functions return TIMERR_NOERROR
if successful or TIMERR_NOCANDO if the resolution specified is out of range. Note, the best
places for these calls are when the GameManager starts up and when the GameManager
shuts down, respectively (see Section 4.4.4 on page 71). This functions must be linked in
via the Winmm.1ib library.

Listing 4.22: Sleep() example for Windows
// Sleep for 20 milliseconds .

int sleep_time = 20;
Sleep(sleep_time) ;

= O

N

Listing 4.23 provides pseudo-code for how the Clock class and sleep functions can be
used together in the game loop. The call to clock.delta() at the beginning of the loop
starts the timing, while the call to clock.split () after most of the loop body provides the
elapsed time, measuring how long the game loop took. The game engine then sleeps (via
nanosleep() for Linux or Mac or Sleep() for Windows) for TARGET_TIME - loop_time.

Listing 4.23: The game loop with Clock
()(Clock clock 1

5There are 1 billion nanoseconds in 1 second.

s

Ye

5
s

4.4. Game Management 70

while (game not over) do
clock.delta()

Get input // e.g., keyboard/mouse

Update game world state

Draw current scene to back buffer

Swap back buffer to current buffer

loop_time = clock.split()
sleep (TARGET_TIME - loop_time)
end while

The expectation is that (TARGET_TIME - loop_time) is positive, since the sleep() call
on line 10 of Listing 4.23 expects positive number. But what happens when it is not? First
off, consider what it means for (TARGET TIME - loop_time) to be negative. This happens
when the time to do the processing work in the game loop (the input, update, draw and
swap) takes longer than the expected time for one iteration of the game loop (longer than
TARGET_TIME). When this happens, the game engine cannot keep up with the work required
to run the game, resulting, at a minimum, in the displayed frame rate that the player sees
to decrease. For example, if the TARGET_TIME is 33 milliseconds, providing a frame rate
of 30 f/s, but the loop time (loop_time) takes 50 milliseconds, the frame rate is only 20
f/s. With longer loop times, the frame rate drops further, decreasing the smoothness of the
visual display for the player. The time between getting input from the player also decreases,
probably making the game feel less responsive.

If the loop_time is greater than the TARGET_TIME, do the game objects themselves need
to slow down also? Not necessarily. When updating the game world, the engine can be
aware of the previous update time, thus knowing how much time has elapsed, and use this
to decide how far, say, an object should move. The game engine could pass along timing
information to update functions and for those functions to use the information accordingly.

For example, in the Saucer Shoot tutorial (Chapter 3), the Hero decrements a counter
each step to restrict the rate of fire. If the goal was to keep the rate of fire consistent with
the real-world time (e.g., fire one bullet every second), then the game code could use the
elapsed time as in the following listing:

0[fire_countdown -= ceil (elapsed_time / TARGET_TIME)]

This would decrease the fire_countdown value by more than 1 each step when the
elapsed time (elapsed_time) was greater than the target loop time (TARGET_TIME).

However, in Dragonfly, the engine does not do this, so if the computer cannot keep
up at the expected TARGET_TIME pace, the game will look, feel and run slower. Thus, as
for programming all games using a game engine, Dragonfly game programmers must work
within the constraints of the engine to ensure the load their game places on the engine does
not cause performance issues.

4.4.3.1 Fine Tuning the Game Loop (optional)

A subtle timing aspect that is important for some games is that when calling operating
system sleep functions (e.g., nanosleep() or Sleep()), the actual amount of sleep time may
be longer than requested depending upon other activity in the system and the operating

“fe,

\

4.4. Game Management 71

system scheduler. In most cases, this does not matter much, since sleep differences are
typically being only a matter of a few milliseconds at most. However, in some cases, such as
when trying to synchronize game state on two different machines in a multi-player game or
when tying to keep game time consistent with real-world time (i.e., external clocks), more
precision in the total time a game loop takes is required.

If so, a final adjustment to the loop timing can be made by determining how long the
sleep function call actually took. Measurement can be done before and after the sleep call,
with any extra time subtracted from the next game loop. Listing 4.24 shows how to put in
this adjustment.

Listing 4.24: The game loop with Clock and sleep adjustment

Clock clock
while (game not over) do
clock.delta()

Get input // e.g., keyboard/mouse

Update game world state

Draw current scene to back buffer

Swap back buffer to current buffer

loop_time = clock.split()

intended_sleep_time = TARGET_TIME - loop_time - adjust_time
clock.delta()

sleep(intended_sleep_time)

actual_sleep_time = clock.split ()
adjust_time = actual_sleep_time - intended_sleep_time
if adjust_time < O then
set adjust_time to O
end if

end while

4.4.4 The GameManager

With timing technologies developed for the game loop, implementation of the GameManager
can now be started with the class definition provided in Listing 4.25.

The GameManager constructor should set the type of the Manager to “GameManager”
(i.e., setType ("GameManager") and initialize all attributes.

The method setGameOver () lets the game programmer set the game over condition
when ready (e.g., the player has indicated they want to quit) and getGameOver () returns
the game over status.

The run() method is used to start the game, effectively running the game loop until
the game is over, controlled by the boolean attribute game_over.

The GameManager needs start up methods, like all engine managers. The GameMana-
ger startUp () method instantiates (via getInstance()) and starts up (via startUp()) all
the other game managers and in the right order. For now, the GameManager only starts
up the LogManager. The game_over variable should be set to false. Most games typically
use the default of 33 milliseconds (line 3), but games that want to run faster or slower may

o,

\

16

19

4.4. Game Management 72

want to use an alternate frame time.” If developing for Windows, GameManager startUp ()
should invoke timeBeginPeriod (1) (see page 69).

The shutDown() method does the reverse, shutting down the LogManager. It calls
setGameOver () to indicate to any game objects that the game is over, which sets the
game_over variable to true. If developing for Windows, GameManager shutDown () should
invoke timeEndPeriod (1) (see page 69).

Upon success, Manager startUp() and Manager shutDown() should be called from
GameManager startUp() and GameManager shutDown (), respectively.

Listing 4.25: GameManager.h

#include " Manager.h"

// Default frame time (game loop time) in milliseconds (83 ms == 80 f/s).
const int FRAME_TIME_DEFAULT = 33;

class GameManager : public Manager {
private:
GameManager () ; // Private since a singleton.
GameManager (GameManager const&); // Don’t allow copy.
void operator=(GameManager const&); // Don’t allow assignment.
bool game_over; // True, then game loop should stop.
int frame_time; // Target time per game loop, in milliseconds .
public:

// Get the singleton instance of the GameManager .
static GameManager &getInstance ();

// Startup all GameManager services .
int startUp();

// Shut down GameManager services.
void shutDown () ;

// Run game loop .
void run() ;

// Set game over status to indicated value.
// If true (default), will stop game loop .
void setGameOver (bool new_game_over=true) ;

// Get game over status.
bool getGameOver () const;

// Return frame time.
// Frame time is target time for game loop, in milliseconds .
int getFrameTime () const;

g

* Did you know (#3)7 Large dragonflies have an average cruising speed of about 10 mph, with a
maximum speed of about 30 mph. — “Frequently Asked Questions about Dragonflies”, British Dragonfly
Society, 2013.

4.4. Game Management

73

Tip 8! Acronyms for Dragonfly managers. Comparing Listing 4.25 with the
full GameManager.h header file available online will show an extra line:

#define GM df::GameManager::getInstance()

This allows programmers, both game engine programmers and game
programmers, to access the GameManager singleton via GM. For ex-
ample, a game programmer could write GM.setGameOver() instead of
df : :GameMangager: :getInstance() .setGameOver (). The full version of Dragon-
fly has similar code in the header file for each manager: “GM” for GameManager,
“LM” for LogManager, “RM” for ResourceManager, “IM” for InputManager,
“DM” for DisplayManager, and “WM” for WorldManager. While such blanket
syntax replacement should be used sparingly (remember, #define directives are
handled by the pre-processor during compilation), in this case the ability to use the
two-letter acronym for the singleton managers makes coding more convenient and

code more readable. (Note, there is no semi-colon at the end of the above line.)

4.4.5 Development Checkpoint #2!

If you have not kept up already, Dragonfly development should continue! Steps:

1.

Create the Clock class. Create a Clock.h header file based on Listing 4.20. Add
Clock.cpp to the project and stub out each method so it compiles.

Implement and test, using a simple program that creates a Clock object, waits for
awhile (use an appropriate sleep call), and calls split() and/or delta(). Verify
the times meet expectations. A robust LogManager (developed during Development
Checkpoint 4.3.7) can be used for output.

. Create the GameManager class. Create a GameManager.h header file based on List-

ing 4.25. Add GameManager.cpp and stub out each method so it compiles.

. In the GameManager . cpp file, have the startUp () method start the LogManager, and

the shutDown() method stop the LogManager and call setGameOver (). Test that
startUp() and shutDown () work as expected before proceeding.

. Implement the game loop inside the GameManager run() method. The body of the

loop does not do anything yet (although you can add some “dummy” statements),
but the loop should time (via delta() and split()) and sleep properly. Be sure to
double-check any conversions of units (e.g., milliseconds to microseconds) used. The
game loop uses a Clock object. Test thoroughly by timing (with a clock on the wall)
that you get the expected number of loop iterations.

. Add additional functionality to the GameManager, as desired. The frame time option

to startUp() can be useful.

-

- ,@;
e
* 0\

4.4. Game Management 74

Since code developed during this Development Checkpoint drives the entire game, it
should be tested thoroughly, making sure it is robust and clearly written before proceeding.

Tip 9! Measuring elapsed time from a shell. From a command shell, such
as a Bash shell in Linux and the Power Shell in Windows, the Linux time utility
and the Measure-Command utility can be used to measure the elapsed time for a
running program. For example, in a Linux Bash shell the command would be
time a.out and in Windows Power Shell the command would be Measure-Command
myprogram.exe. S0, for example, having a game loop iterate 100 times and then
exit can be timed via a command shell to verify it takes 3.3 seconds.

‘«:’{.,

4.5. The Game World 75

4.5 The Game World

The game world itself is full of objects: bad guys running around; walls that enclose build-
ings and spaces; trees, rocks and other obstacles; and the hero, rushing to save the day. The
exact types of objects depend upon the genre of game, of course, but in nearly all games,
the game engine has many objects to manage (game objects are introduced in Section 4.5.1
on page 75).

The game world needs to store and access groups of objects. In addition, the game
programmer needs to access game objects in order to make them react to input or perform
game-specific functions. So, the game world needs to manage them efficiently and present
them in a convenient fashion. The game programmer might want a list of all the solid game
objects, a list of all the game objects within the radius of an explosion, or a list of all the
Saucer objects. It is the job of the world manager to store the game objects and provide
these lists in response to game programmer queries. Section 4.5.2 on page 79 introduces
lists of game objects.

The game world not only stores and provides access to the game objects, it also needs
to update them, move them around, see if they collide, and more. Section 4.5.4 (page 90)
introduces methods to update game objects, with Section 4.5.5 (page 91) providing details
on events, of vital importance for understanding how a game engine connects to game
programmer code.

4.5.1 Game Objects

Game objects are a fundamental game programmer abstraction for items in the game. For
example, consider Saucer Shoot from Section 3.3. As in many games, there are opponents to
defeat (i.e., Saucers), the player character (i.e., the Hero), projectiles that can be launched
(i.e., Bullets), and other game objects (e.g., Explosions, Points, etc.). Other games may
have obstacles or boundaries to bypass (e.g., walls, doors), items that can be picked up
(e.g., gold coins, health packs), and even other characters to interact with (e.g., non-player
characters). The game engine needs to access all these game objects, for example, to get
an object’s position. The game engine also needs to update these objects, for example, to
change the location as the game object moves. Thus, a core attribute for a game object,
and the first one used in Dragonfly, is the object’s position, stored as a 2d vector.

4.5.1.1 The Vector Class

The Vector class represents a 2d vector. When used for a position, the Vector is sufficient
to hold a 2d location in the game world. Some future version of Dragonfly could provide a
third dimension, z, and/or provide coordinates as floating point numbers. The header file
for the Vector class is described in Listing 4.26. Vector mostly holds the attributes x and
y, with methods to get and set them. In addition to the default constructor (which set x
and y to 0), on line 9, Vector has a constructor that sets x and y to initial values.

Listing 4.26: Vector.h

ol class Vector {

1

s

* ol

8.}

5%

Ye

4.5. The Game World

private:
float m_x; // Horizontal component.
float m_y; // Vertical component.

public:

// Create Vector with (z,y).
Vector (float init_x, float init_y);

// Default 2d (z,y) is (0,0).
Vector () ;

// Get/set horizontal component.
void setX(float new_x);
float getX () const;

// Get/set wvertical component.
void setY(float new_y);
float getY() const;

// Set horizontal & vertical components.

void setXY(float new_x, float new_y);

// Return magnitude of wvector.
float getMagnitude () const;

// Normalize wvector .
void normalize () ;

// Scale wvector .

void scale(float s);

// Add two Vectors, return new Vector.
Vector operator+(const Vector &other) const;

76

+;

To make a Vector more generally useful, methods and operators on lines 26 to 35 are
provided.

Vector getMagnitude(), shown in Listing 4.27, returns the magnitude (size) of the
vector.

Listing 4.27: Vector getMagnitude()

// Return magnitude of wvector.

float Vector::getMagnitude ()
float mag = sqrt(x*x + y*y)
return mag

Vector scale(), shown in Listing 4.27, resizes (changes the magnitude) of the vector by

the scale factor, leaving the direction for the vector unchanged.

Listing 4.28: Vector scale()

o // Scale wector .

1
2

void Vector::scale(float s)
X = X * 8

4.5. The Game World 77

3L y =y * s J

o= O

= W

3| // Engine includes.

Vector normalize (), shown in Listing 4.29, takes a vector of any length and, keeping it
pointing in the same direction, changes its length to 1 (also called a unit vector). The if
check is to avoid a possible division by zero.

Listing 4.29: Vector normalize()

// Normalize wvector .
void Vector::normalize ()
length = getMagnitude ()
if length > O then
x = x / length
y =y / length
end if

Overloading the addition operator (+ in v1 + v2) for a Vector is shown in Listing 4.30.
The method is called on the first vector (the Vector on the left-hand side of the ‘+’) with
the second vector provided as an argument (the Vector on the right-hand side of the ‘+).
The variable v holds the new Vector, with x and y values added from the components of
the other two vectors and then returned.

Listing 4.30: Vector operator+

// Add two Vectors, return new Vector.
Vector Vector::operator+(const Vector &other) const {

Vector v // Create new wvector.
v.x = x + other.x // Add z components.
v.y = y + other.y // Add y components.
return v // Return new wvector.

Other Vector operators (optional) The addition operator (+) is core since adding
two vectors is used for many operations. However, there are other operators that may
useful for a general Vector class, including: subtraction (=), multiplication (x), division (/),
comparison (== and !=) and not (!). The aspiring programmer may want to implement
them, using Listing 4.30 as a reference.

4.5.1.2 The Object Class

With the Vector class in place, the Object class can now be specified. The Object class
definition is provided in Listing 4.31.

Listing 4.31: Object.h

// System includes.
#include <string>

#include " Vector.h”

class Object {

private:

s

Ye

5
s

4.5. The Game World 78

int m_id; // Unique game engine defined identifier.
std::string m_type; // Game programmer defined type.

Vector m_position; // Position in game world.

public:

// Construct Object. Set default parameters and
// add to game world (WorldManager).
Object O ;

// Destroy Object.
// Remove from game world (WorldManager).
virtual ~“0bject();

// Set Object id.

void setId(int new_id);

// Get Object id.
int getId() const;

// Set type identifier of Object.
void setType(std::string new_type);

// Get type identifier of Object.
std::string getType() const;

// Set position of Object.
void setPosition(Vector new_pos);

// Get position of Object.
Vector getPosition () const;

g

Each Object has a unique id, initialized in the constructor (Object ()), that may be of
use in some games to uniquely identify an game object. The id is obtained from a static
integer declared in the Object constructor that starts at 0 and is incremented each time
Object () is called. The method getId() can be used to obtain an Object’s id. The method
setId() can be used to set an id manually, but in many games this is never used.”

The type is a string primarily used to identify the Object type in game code. For
example, a Bullet object can invoke setType ("Bullet"), allowing a Saucer object to query
a collision event to see whether or not the type was a “bullet”, destroying oneself as an
action. For the base Object constructor, the type can just be set to "Object".

The Object setPosition() and getPosition() methods allow changing the attribute
m_position (via set) and retrieving it (via get).

Objects will have many attributes eventually (such as altitude, solidness, bounding boxes
for collisions, animations for rendering sprite images, ...) but for now merely storing the
position of the game world is sufficient.

Note that the destructor for Object is virtual on line 20. This is necessary since

5In most cases, the game programmer can uniquely identify an object by its memory address, but an
integer may be more convenient. Moreover, a network game cannot count on a game object that is replicated
on another computer to have the same memory address.

"A common exception is for synchronizing game worlds in a networked computer game.

4.5. The Game World 79

Objects are deleted by the engine, not the game programmer, and the virtual keyword
makes sure the right destructor is called for derived game objects. If the destructor was
not virtual, when an Object was deleted by the engine, only “0bject () would be invoked
and not the destructor for a game programmer object that inherited from it.

4.5.2 Lists of Objects

In order to handle the management and presentation of game objects to the game program-
mer, the world manager needs a data structure that supports lists of game objects, lists
that can be created and passed around (inside the engine and to the game programmer)
in a convenient to use and efficient to handle manner. In passing the lists to the game
programmer, if the Objects themselves are changed (e.g., say, by decreasing the hit points
of Objects damaged in an explosion), updates need to happen to the “real” objects as seen
by the world manager. While there are numerous libraries that could be used for building
efficient lists (e.g., the Standard Template Library or the Boost C++ Library), list perfor-
mance is fundamental to game engine performance, both for Dragonfly as well as for other
game engines, so implementing game object lists provides an in-depth understanding that
may impact game engine performance. Plus, there are additional programming skills to be
gained by implementing lists from scratch.

There are different implementation choices possible for lists of game objects, including
linked lists, arrays, hash tables, trees and more. For ease of implementation and perfor-
mance efficiency, an array is used for lists of game objects in Dragonfly. In addition, the
iterator design pattern can be used to provide a way to access the list without exposing the
underlying data representation. In general, separating iteration from the container class
keeps the functionality for the collection separate from the functionality for iteration. This
simplifies the collection (not having it cluttered with iteration methods), allows several it-
erations to be active at the same time, and decouples collection algorithms from collection
data structures, while still leaving the details of the container implementation encapsulated.
This last point means the internals of the list data structure can be changed (e.g., replace
the array with a linked list) without changing the rest of the game engine or any dependent
game programmer code.

For reference, consider a basic list of integers (ints), shown in Listing 4.32.

Listing 4.32: List of integers implemented as an array

const int MAX = 100;
class IntList {

private:
int list [MAX];
int count;

public:
IntList () {
count = 0;

}

// Clear list.

s

* ol

8.}

5%

Ye

15
16

19

N

4.5. The Game World 80

7|}

void clear () {
count = O0;

}

// Add item to list.
bool insert (int x) {

if (count == MAX) // Check if room.
return false;

list [count] = x;

count++;

return true;

}

// Remove item from list.
bool remove (int x) {
for (int i=0; i<count; i++) {

if (list[i] == x) { // Found ...
for (int j=i; j<count-1; j++) // ...so scoot owver
list[j] = list[j+1];
count --;
return true; // Found.
}
}
return false; // Not found.

}

// Index into list.
int operator [](int i) {
if (i >= m_count || i < 0)
throw std::out_of_range (" Invalid index!");
return list[i];

}

The list starts out empty, by setting the count of items to 0 in the constructor. Basic

operations allow the programmer to insert() items, remove() items, and clear() the
entire list. Line 41 uses C++ operator overloading, enabling brackets (e.g., 1ist[2]) to
index into the list. The throw operation at line 41 triggers an exception with the indexed
value is out of range.

Clearing the list and adding items to the list are quite efficient. Removing items from

the list is rather inefficient, requiring the entire list to be traversed each time. The list
is searched from the beginning to find the item to remove and then the rest of the list is
traversed to “scoot” the items over one spot. Rather than scoot the items over, a “pop and
swap” operation could be used:

for (int i=0; i<count; i++)
if (list[i] == x) // Found...
// Pop last item from end and swap over item to delete.
list[i] = list[count-1];

This has the advantage of not iterating through the remainder of the list, but the disad-
vantage of changing the list order after the remove() operation. Plus, given the search

-
"ﬁ?,‘
.
* 0\

4.5. The Game World 81

required to find the item to delete, the remove () operation is still O(n), where n is the
number of list items.® However, perhaps most importantly, copying the list, which in a
game engine happens often as many lists are created and destroyed by both the engine
and the game programmer, is efficient as compilers (and programmers) handle fixed sized
chunks of memory efficiently.

While arrays are efficient, it is still not a good design for the game engine to have entire
objects inside the list. In other words, the int in Listing 4.32 should not be replaced by an
Object representing a game object. Instead, lists of game objects are handled by having
pointers to the game objects. So, int is replaced with Object *. Using pointers allows the
game engine to reference the game object’s attributes and methods and still remain efficient
for creating the many needed lists of objects needed. Basically, copying a list of pointers is
much faster (and uses less memory) than copying a list of game objects. In addition, lists
passed from the engine to, say, the game code refer to the original Objects (via the pointers)
and not copies. Last but not least, having Object pointers allows for polymorphism, as in
Listing 1.1 on page 8, when Object methods are resolved.

Listing 4.33 shows the header file for ObjectList. The list data (Objects) is statically
declared as a large (e.g., MAX_OBJECTS is 1000) array of Object pointers, with the count
(m_count) set to 0 in the constructor. Implementation of the ObjectList methods is done
similarly as the IntList (see Listing 4.32 on 79).

Listing 4.33: ObjectList.h
const int MAX_OBJECTS = 1000;

#include " Object.h”

class ObjectList {

private:
int m_count; // Count of objects in list.
Object *m_p_obj [MAX_OBJECTS]; // Array of pointers to objects.
)| public:

// Default constructor .
ObjectList () ;

// Insert object pointer in list.
// Return 0 if ok, else —1.
int insert(Object *p_o);

// Remove object pointer from list.
// Return 0 if found, else —1.

int remove(Object *p_o);

// Clear list (setting count to 0).
void clear();

// Return count of number of objects in list.
int getCount () const;

8Tests with the Dragonfly Bounce benchmark modified to delete 50% of items added each time showed
negligible performance differences between “pop-and-swap” and “scoot.”

s

Ye

5
s

4.5. The Game World 82

28 // Return true if list is empty, else false.
29 bool isEmpty () const;

31 // Return true if list is full, else false.
32 bool isFull() const;

3 // Indez into list.
35 Object* &operator [](int index);
36| };

One implemented, an ObjectList can be created, Objects added to it (via ObjectList
insert () and removed (via ObjectList remove()). When needed, the ObjectList can be
iterated through much as would a typical C++ array, as shown in Listing 4.34.

Listing 4.34: C++ Code illustrating iteration through an ObjectList

ol ObjectList ol;
i| for (int i=0; i < ol.getCount (); i++)
2 Object *p_o = ol[il;

Tip 10! Naming pointers. Debugging pointer errors can be a challenging, frus-
trating experience. It is better to avoid pointer problems as much as possible in
both design and coding, rather than chase down pointer bugs. Given the need to
treat pointers with care, it is helpful to have a naming convention that indicates
which variables are pointers, even if this is the only naming convention followed.
In Dragonfly, pointers are indicated by a ‘p_’ prefix, standing for “pointer”. It is
recommended this same convention be followed by game programmers in game code.
See Section 5.1.2 on page 249 for other bug-prevention tips.

4.5.2.1 List Iterators (optional)

The iterator design pattern can be used to provide a way to access the list without exposing
the underlying data representation. In general, separating iteration from the container class
keeps the functionality for the collection separate from the functionality for iteration. This
simplifies the collection (not having it cluttered with iteration methods), allows several
iterations to be active at the same time, and decouples collection algorithms from collection
data structures, while still leaving the details of the container implementation encapsulated.
This last point means the internals of the list data structure can be changed (e.g., replace
the array with a linked list) without changing the rest of the game engine or any dependent
game programmer code.

There can be more than one iterator for a given list instance, each keeping its own
position. Note, however, that adding or deleting items to a list during iteration may cause
the iterator to skip or repeat iteration of an item (not necessarily the one added) — the
program should not crash, but the iteration may not touch each item once and only once.

There are 3 primary steps in coding an iterator for a container:

-

- «a}:
e
* 0\

0

4.5. The Game World 83

1. Understand container class (e.g., List)
2. Design iterator class for container class
3. Add iterator materials:

o Add iterator as friend class of container class

To illustrate these steps, consider creating a IntListIterator for the List defined in List-
ing 4.32 on page 79. Step 1 is to understand the implementation of List, in terms of the
attributes p_obj[] array and the count used to store and keep track of list members. Step
2 is to define an iterator for IntList, provided by IntListIterator in Listing 4.35. The con-
structor for IntListIterator (line 7) needs a pointer to the IntList object it will iterate over,
which it stores in attribute p_-list. Since the iterator does not change the contents of the
list, this pointer is declared as const. The index attribute is used to keep track of where
the iterator resides in the list during iteration. The first() method resets the iterator
to the beginning of the list. Subsequently, next () and isDone () allow iteration until the
end of the list. The method currentItem() returns the current item that the iterator is
on. Note, although not shown for brevity, index should be error checked for bounds in
currentItem() and next().

Listing 4.35: Tterator for IntList class

class IntListIterator {

private:
const Intlist *p_list; // Pointer to IntList iterating over.
int index; // Index of current item.

public:

IntListIterator (const IntList #*p_1) {
p_list = p_1;
first () ;

}

// Set iterator to first item.
void first() {
index = O0;

}

// Iterate to next item.
void next () {
if (index < p_list -> count)
index++;

}

// Return true if done iterating, else false.
bool isDone () {
return (index == p_list -> count);

}

// Return current item.
int currentItem () {

s

Ye

5
s}

0

4.5. The Game World 84

return p_list -> item[index]; |

For step 3, in order for the IntListIterator to access the private member of the IntList
class, namely the item[] array and the list count, IntListIterator must be declared as a
friend class inside IntList.h.

friend class IntlListIterator; ’

1] ...

Both IntList.h and IntListIterator.h need forward references to class IntListIter-
ator and class IntList, respectively, for compilation.

Once the IntListIterator is defined, a programmer that wants to iterate over an instance
of a List, say my 1ist, first creates an iterator:

u[IntListIterator 1li (&my_list);]

1

)

Then, the programmer calls first (), currentItem(), and next () until isDone() re-
turns true.

Listing 4.36: Iterator with while() loop

ol 1i.first () ;
while (!1i.isDomne()) {
int item = 1li.currentItem();
1i.next ();

& .

A for loop has a bit shorter syntax:

Listing 4.37: Iterator with for() loop

ol for (li.first(); '1i.isDomne(); 1li.next())

1

0

int item = 1li.currentItem();

ObjectList Iterators (optional) The ObjectList class, as described in Section 4.5.2, is
a fine container class, but could be enhanced by defining an iterator for the ObjectList class.
In general, iterators “know” how to traverse through a container class without exposing the
internal data methods and structure publicly. Iterators do this by being a friend of the
container class, giving them access to the private and protected attributes of the class.
Defining an iterator decouples traversing the container from the container iteration. This
allows, for instance, the structure of the container to be changed (e.g., from a static array
to a linked list) without redefining all the code that uses the container.
The ObjectList sets the ObjectListIterator up as a friend:

Listing 4.38: ObjectList extension to add a list iterator

1| class ObjectListIterator;

)

3 class ObjectList {

1

s

* ol

8.}

5%

Ye

4.5. The Game World 85

public:
friend class ObjectListIterator;

Notice that line 1 of Listing 4.38 refers to an “ObjectListIterator” class that has not
been defined. This line is needed to act as a forward reference for the compiler, allowing
compilation to proceed, as long as the ObjectListIterator class is defined before linking.

For Dragonfly, the complete header file for an ObjectListIterator is defined in List-
ing 4.39. Having the default constructor private on line 8 makes it explicit that an Ob-
jectList must be provided to the iterator when created. The class method implementation
follows that of the IntListIterator in Listing 4.35.

Listing 4.39: ObjectListIterator.h

#include " Object.h”
#include " ObjectList.h”

class ObjectlList;

class ObjectListIterator {

private:
ObjectListIterator (); // Must be given list when created.
int m_index; // Index into list.

const Objectlist *m_p_list; // List iterating over.

public:
// Create iterator , over indicated list.
ObjectListIterator (const ObjectList *p_1);

void first(); // Set iterator to first item in list.
void next (); // Set iterator to next item in list.
bool isDomne() const; // Return true if at end of list.

// Return pointer to current Object, NULL if done/empty.
Object *currentObject () const;
g

4.5.2.2 Overloading + for ObjectList (optional)

A useful abstraction for game programmers is to combine two ObjectLists, the result being a
third, combined list holding all the elements of the first list and all the elements of the second
list. A method named add () could combine two lists, written as part of the ObjectList class
(e.g., ObjectList::add()) or as a stand alone function. However, a natural abstraction is
to use the addition (‘+’) operator, overloading it to combine ObjectLists in the expected
way.

In C++, operators are just functions, albeit special functions that perform operations
on objects without directly calling the objects’ methods each time. Unary operators act on
a single piece of data (e.g., my_int++), while binary operators operate on two pieces of data

-
‘Oﬁﬁ,‘
°
* 0\

)

)

-

4.5. The Game World 86

(e.g., new_int = my_intl + my_int2). For ObjectLists, overloading the binary addition
‘(+)” operator is helpful. The syntax for overloading an operator is the same as for declaring
a method, except the keyword operator is used before the operator itself.

Overloading the addition operator for an ObjectList is shown in Listing 4.40. The
method is called on the first list (the ObjectList on the left-hand side of the ‘+’), with
the second list provided as an argument (the ObjectList on the right-hand side of the ‘+’).
The variable big 1ist holds the combined list, starting out by copying the contents of
the first list ((*this) on line 4). The method then proceeds to iterate through the second
list, inserting each element from the second list into the first list on line 10. Once finished
iterating over all elements in the second list, the method returns the combined list big 1ist
on line 14.

Listing 4.40: ObjectList operator+

// Add two lists , second appended to first.
ObjectList ObjectList::operator+(0ObjectList 1list)

// Start with first list.
ObjectList big_list = *this

// Iterate through second list , adding each element.
ObjectListIterator 1i(&list)
for (li.first(); not 1li.isDomne(); 1li.next())

Object *p_o = 1li.currentObject ()

big_list.insert(p_o) // Add element from second, to first list.
end for

// Return combined list.
return big_list

Since ObjectLists are implemented as arrays, a more efficient ‘+’ operation could allocate
one array of memory large enough for both lists, then, using memcpy () or something similar,
copy the first list then the second list into the allocated memory. Care must be taken to
get the pointers and memory block length correct. That is left as option for the reader to
explore outside this text.

However, as an advantage, the implementation in Listing 4.40 is agnostic of the actual
implementation of ObjectList. The lists could be implemented as either arrays or linked
lists with pointers or some other internal structure and the code would still work.

Once defined, the ObjectList ‘+’ operator can be called explicitly, such as:

ObjectList 1list_1, list_2;
ObjectList list_both = ObjectList+(list_1, list_2);

but a more natural representation is to call it as intended:

ObjectList 1list_1, list_2;
ObjectList list_both = list_1 + list_2;

4.5.2.3 Dynamically-sized Lists of Objects (optional)
A significant potential downside of the code shown in Listing 4.32 and Listing 4.33 is that
the maximum size of the list needs to be specified at compile time. If the list grows larger

cusi,
™ -
"\

\

4.5. The Game World 87

than this maximum, items cannot be added to the list — the container class data structure
cannot do anything besides return an error code. This is true even when there is memory
available on the computer to store more list items. A full list is potentially problematic —
for example, the world manager can no longer manage any more Ogres or the player cannot
put more Oranges into a backpack. Specifying a larger maximum size and then recompiling
the game engine and the game is hardly an option for most players!

What can be done instead is to make arrays that dynamically resize themselves to
be larger as more items are required to be stored in the list. This has two tremendous
advantages: 1) the maximum size of the list does not need to be known by the engine ahead
of time, and 2) game object lists do not have to all be as large as the potential maximum
size, but can instead be small when a small list is required and only become large when a
large list is required, thus saving runtime memory and runtime processing time when lists
are copied and returned. The downside of this approach is that more runtime overhead is
incurred when a list grows. If done right, however, this runtime overhead can be infrequent
and fairly small.

The basic idea of dynamically sized lists is to allocate a relatively small array to start.
Then, if the array gets full (via insert()), the memory is re-allocated to make the array
larger. In order to avoid having the re-allocation happen every time a new item is inserted,
the re-allocation is for a large chunk of memory. A good guideline for the size of the larger
chunk is twice the size of the list that is currently allocated.

In order to make this change, first, the ObjectList attribute for the list needs to be
changed from an array to a list of pointers, such as Object **p_list.”

Next, the ObjectList constructor needs to allocate memory for the list dynamically. This
can certainly be done via new, but memory can be efficiently resized using C’s realloc ().
The initial allocation uses malloc() to create a list of size MAX_COUNT_INIT. MAX_COUNT_-
INIT is defined to be 1, but other sizes can certainly be chosen. The ObjectList destructor
should free() up memory, if it is allocated.

Listing 4.41: Re-declaring list to be dynamic array label

ol max_count = MAX_COUNT_INIT; // Initial list size (e.g., 1).
| p_item = (Object **) malloc(sizeof (Object *));

In the insert () method, if the list is full (isFull() returns true) then the item array
is re-allocated to be twice as large, shown in Listing 4.42.

Listing 4.42: Re-allocating list size to twice as large

0| Object **p_temp_item;

il p_temp_item = (Object **)

2 realloc(p_item, 2*sizeof(Object *) * max_count) ;
3l p_item = p_temp_item;

4l max_count *= 2;

9The variable name is changed from 1list to explicitly depict that this is a pointer with dynamically
allocated memory.

10Preliminary investigation running the Bounce benchmark and Saucer Shoot on both Linux Mint and
Windows 7 suggests about 20% of the time when a list needs to expand, the memory block can be extended
via realloc(), while 80% of the time the new block must be allocated elsewhere.

s

Ye

5
s

4.5. The Game World 88

The default copy constructor and assignment operator provided by C++ only do “shal-
low” copies, meaning any dynamically allocated data items are not copied. Since the revised
List class has dynamically allocated memory for the items, a new copy constructor and as-
signment operator need to be created, each doing a “deep” copy. The copy constructor and
assignment operator prototypes look like:

Listing 4.43: Copy and assignment operator prototypes

ol ObjectList ::0bjectlList (const ObjectList &other);
1| ObjectList &operator=(const ObjectList &rhs);

N =

In the assignment operator, memory for the copy needs to be dynamically allocated and
copied over, along with the static attributes:

Listing 4.44: Deep copy of list memory

p_item = (Object **) malloc(sizeof (Object *) * other.max_count);
memcpy (p_item, other.p_item, sizeof (Object *) * other.max_count);
max_count = other.max_count;

count = other.count;

The assignment operator is similar, but with two additions before doing the deep copy:
1) the item being copied, rhs, must be checked to see if it is the same object (*this) to
avoid copying the list over itself. Doing this check makes sense for efficiency and can also
prevent some crashes in copying the memory over itself; 2) if the current object (*this) has
memory allocated (p_item is not NULL), then that memory should be free()’d. Not doing
this results in a memory leak.

Note, the above code needs additional error checking (not shown) since calls to malloc ()
and realloc() can fail (returning NULL).

Lastly, the ObjectList destructor is not shown, but needs to check if (p_item is not
NULL), and, if so, then that memory needs to be free()’d.

4.5.3 Development Checkpoint #3!

If you have not continued to do so, resume development now.

1. Create the Vector and Object classes, using the headers from Listing 4.26 and List-
ing 4.31, respectively. Add Vector.cpp and Object.cpp to the project and stub out
each method so it compiles.

2. Implement both Vector and Object. Then, test even though the logic is fairly simple
in both of these classes since they are primarily holders of attributes.

3. Create the ObjectList class, using the header from Listing 4.33. Refer to Listing 4.32
for method implementation details, remembering that ObjectList uses a static array
of Object pointers. Add .cpp code to the project and stub out each method so it
compiles.

4. Implement ObjectList and test. At this point, write a test program that inserts and
removes elements from an ObjectList. Be sure to test boundary conditions (e.g., index
the list out of bounds - it should throw an exception). Check if the isFull () method

“of,

\

4.5. The Game World 89

works, too, when the list reaches maximum size. Test cases where the list is empty,
too.

Tip 11! Array index in C++4. Remember that in C/C++, arrays begin at 0
and end at one less than the allocated size. For example, given an array of integers
allocated as int item[3], the first array item is item[0] and the last array item is
item[2]. In particular, for code that iterates through the entire array, make sure
that the ends of the array are not crossed. In general, when iterating through arrays,
the boundary conditions (beginning and end of the loop) should be double-checked
carefully.

Make sure to test all the above code thoroughly to be sure it is trustworthy (robust).
Make sure the code is easy to read and commented sufficiently so it can be re-factored later
as needed — the Object class is definitely re-visited as game objects grow in attributes and
functionality.

‘«:’{.,

4.5. The Game World 90

4.5.4 Updating Game Objects

The world in real-life is dynamic, with objects changing continuously over time. Game
worlds are often viewed the same way since they are also dynamic, but the game engine
advances the game world in discrete steps, one step each game loop. Viewed another way,
each iteration of the game loop updates game objects to produce a sample of the dynamic
game world, with Dragonfly taking 30 samples per second. At the end of a game loop,
the static representation of the world is displayed to the player on the screen. Objects are
consistent with each other at that time. However, while updating the world (so, in the
middle of a game loop iteration), the game world may be in an inconsistent state. This
latter fact is important in handling how game objects are deleted (more on this, later).

Updating the objects in the game world is one of the core functions of a game engine.
Such updates: 1) Make the game dynamic since many objects change state during the
course of the game. For example, an enemy can change position, moving towards the
player’s avatar. 2) Make the game interactive, since objects can respond to player input.
For example, a player avatar object can be moved north in response to the player pressing
the up arrow.

The simple approach to updating game objects is to have each object have an Update ()
method. In the game loop, the engine then iterates over all objects in the world, calling
Update () for each object, as shown in Listing 4.45. In this case, the Update () method is
responsible for updating the state of the object as appropriate. This could mean moving
the object in a certain direction at a certain speed, or gathering input from the keyboard or
mouse or doing whatever other unique action needs to happen each step of the game loop.
Some actions, such as movement and keyboard input, could be generalized and handled by
the game engine (as will be shown later in this chapter). Other actions, such as AI behavior
specific to a game, would need to happen in the game code.

Listing 4.45: Game loop with update

ObjectList world_objects
while (game not over) {

// Update world state.

for i = 0 to world_objects count
Object p_o = world_objects [i]
p_o -> Update ()

end for

As an abstraction, use of the Update () method for all game objects is useful, since it
gets at the heart of what a game engine does. However, the specific implementation of this
straightforward idea has complications. These complications arise from subsystems that
operate on behalf of all objects. For example, an update for a game object often consists
of: moving the object (including checking and responding to collisions), then drawing the
object on the screen. For a Saucer from Saucer Shoot in Section 3.3, this might look like
the code in Listing 4.46. The proposed implementation looks harmless enough, but consider
what is happening for all objects. Each object is moved, collided and drawn completely
before the next object is handled. This serial behavior does not allow for drawing efficiency.

»

» 0%
"}\I',‘
»
® 0\

\

4.5. The Game World 91

For example, it may be that an object is not drawn at all because it is occluded by another
object or even destroyed by another object that moves later in the same game loop iteration.
The serial nature of updates for each game does not allow for tuning. Worse, in some cases,
game objects cannot be drawn until the position of other game objects are known. For
example, drawing a passenger must be done once the position of the vehicle is known, or
the limbs of a 3d model may not be drawable until the position of the skeleton is known.
Thus, efficiency and functionality require another solution.

Listing 4.46: Possible Update() method for Saucer

// Update saucer (should be called once per game loop).
void Saucer::Update ()

WorldManager move (this)

WorldManager drawSaucer (this)

Instead, the subsystems that handle each task (e.g., move, draw) are done as separate
functions by the game engine. The Update () method for each object does not need to ask
the game engine to move, collide or draw the game object itself. These are instead handled
in phases by the game engine, depicted in Listing 4.47. Note, the Update() method for each
game object can still be invoked, calling game code, to do any game-specific functionality
that is needed.

Listing 4.47: Game loop with phases

ObjectList world_objects
while (game not over) do

// Update Objects
for i = 0 to world_objects count

// Update
end for

// Move Objects
for i = 0 to world_objects count

// Move

end for

// Draw Objects
for i = 0 to world_objects count

// Draw

end for

end while

4.5.5 FEvents

Games are inherently event-driven. In the previous section, each iteration of the game loop
is often treated as an event. In other words, in Listing 4.47, each iteration of the game loop
triggers an event that is the Update () method for each object. A typical game has many
events, such as a key is pressed, a mouse is clicked, an object collides with another object,
a bomb explodes, an avatar picks up a health pack, a network packet arrives, etc.

-
“fi:",
°
* 0\

)

4.5. The Game World 92

Generally, when an event occurs, an engine: 1) notifies all interested objects, and 2)
those objects respond as appropriate, also called called event handling. When a specific
event occurs, different objects respond in different ways, and in some cases, may not even
respond at all. For example, when a keypress event occurs, the hero object the player is
controlling may move or fire, but most other objects do not respond. When a car object
collides with a rock object, the car object may stop and take damage while the rock object
may move slightly backward and remain unharmed.

The simple approach to dealing with game events is for the game engine to call the
appropriate method for each game object when the event occurs. In Listing 4.47, this
means that each step of the game loop (a step event) invokes the Update () method of each
game object. Consider another example, where there is an explosion in a game, handled in
the Update () method of an Explosion object, shown in Listing 4.48. In this case, all game
objects within the radius of the explosion have their onExplosion() method invoked.

Listing 4.48: Explosion Update()
void Explosion::Update ()

if (explosion_went_off) then

// Get list of all Objects in range.
ObjectList damaged_objects = getObjectsInRange (radius)

// Have them each react to explosion.
for i = 0 to damaged_objects count

damaged_objects [i] -> onExplosion ()
end for

end if

Listing 4.48 illustrates statically typed, late binding. The code is “late binding” since the
compiler does not know what code is to be invoked at compile time — invocation is bound
to the right method, depending upon the object (e.g., Saucer or Hero), at run time. The
code is “statically typed” since the type of the object (an Object) and name of the method
(onExplosion(), on line 9) are known at compile time. All this sounds ok, and Listing 4.48
looks ok, so what is the problem?

In a nutshell, for a general purpose game engine the problem with this approach is
inflexibility. The statically typed requirement means that all game objects must have
methods for all events. Specifically, for this example, it means every game object needs
an onExplosion() method, even if not all objects use it. The fact that an game object
may not use it is perhaps not so bad, since it can just be ignored (the onExplosion()
method essentially being a “no-op” for that object). However, some games will not even
have explosions, but this approach still requires all game objects to have that method. In
fact, it requires that all events that any game made with the engine be known, and defined,
at compile time. If a game is to be made using an event that is not defined, then too bad
for the game programmer — the engine will not support it. That makes it quite difficult
for the game engine to be general purpose, able to support a variety of games, much less a
variety of game genres.

s

Ye

5
s

4.5. The Game World 93

What is needed is dynamically typed, late binding. While some languages support
dynamic typing automatically (e.g., C#), others, such as C++, must implement dynamic
typing manually. Fortunately, this can be done fairly easily by treating events as objects.
When an event occurs, it is passed to all game objects that are interested in that event. In
the event handler, the event object is inspected for the event type and attributes, and an
appropriate action is taken. This paradigm is often called message passing.

In order to provide the flexibility needed without forcing the engine to recognize all event
types at compile time, the event is encapsulated in an Event object. The Event object has
the information required to represent the event type (e.g., explosion, health pack, collision,
...) with the ability to have additional attributes unique to each event (e.g., radius and
damage, healing amount, location, ...), and can be extended by the game programmer.
Representing events this way has several advantages over the approach in Listing 4.48.

1. Single event handler: Each game object does not need a separate method for each
event (for example, objects do not all need an onExplosion() method). Instead, game
objects have a generic event handler method (e.g., virtual int eventHandler (Event
*p_e)), declared as virtual so it can be overridden, as needed, by derived game code
objects.

2. Persistence: Event data pertaining to the event can be easily stored (say, in a list
inside an object) and handled later.

3. Blind forwarding: An object can pass along an event without even “understanding”
what the event does. Note, this is exactly what the game engine does when it passes
events to game objects! For example, a jeep object may get a “dismount” event. The
jeep itself does not know how to dismount nor have any code to recognize such an
event, but it can pass the event, unmodified, to each of the passengers that it does
know about. The passengers, say people objects, know how to handle a dismount
event, and so take the appropriate action.

There are several options for representing the “type” for each event. One approach is to
make each type an integer. Integers are small and are efficiently handled by the computer
during runtime. Using an enum can make the integer type more programmer-friendly. For
example, an enum EventType can be declared with values of COLLISION, MOVE UP, MOUSE -
CLICK, ... declared. Each “name” is assigned a unique integer value by the compiler. Game
programmers can extend the types to include game specific definitions (e.g., EXPLOSION).
While easy to read and efficient, enum types are relatively brittle in that the actual values
are order dependent, meaning if the order of the names is re-arranged, the integer values
corresponding to each change. This is not a problem if the code using them is re-compiled
accordingly, but can cause problems for things like save game files or databases, or types
stored in source code across systems. Worse, C++ does not readily allow for enums to be
extended, meaning the game programmer cannot easily add custom event types to types
already declared by the engine.

Another option, one used in Dragonfly, is to store event types as strings (e.g., std: :string
event_type). Strings as a type are dynamic in that they are parsed at runtime, allowing
free form use by game programmers. Thus, events can be added easily, such as “explosion”

-
“fi:",
°
* 0\

Yl A W

~

4.5. The Game World 94

or “the dog ate my homework”. The downside is that strings are relatively expensive to
parse compared with integers. However, string comparisons (the most common operation
when checking events at runtime) are usually fast. Another downside is that game program-
mers, especially for large teams, may have potential event name conflicts with each other
or even with the engine. A bit of care where a team of game programmers agrees upon a
naming convention can usually solve this problem. For event names, Dragonfly uses a “df::”
prefix, as it does for a namespace (see page 53), in front of game engine event names (e.g.,
"df::step"). If needed (or for really large development efforts), more elaborate software
tools can even be used to avoid conflicts, checking code for conflicts ahead of time and
detecting human errors.

The arguments needed for each event depend upon the type. For example, an explosion
event may need a radius and damage, while a collision event needs the two objects involved
and perhaps a force vector. The easiest mechanism to support this is to have a new derived
class for each event, where the class inherits from the base event class. Listing 4.49 shows
how this might be declared.!’ In the game code, an event handler looks at the event type.
If it is, for example, an “explosion” and the object should recognize and handle explosion
events, then the object can be inspected for a location, damage and radius.

Listing 4.49: Simple event class

class Event {
std::string event_type;
};

class EventExplosion : public Event {
Vector location;
int damage;
float radius;

g

As discussed earlier, game objects are often connected to each other, so a vehicle may get
a “dismount” event, but it is really intended for the passengers, or a solider may get a “heal”
event that does not need to be passed to her backpack or to the pistol inside. A dependency
chain, often called a chain of responsibility design pattern, can be drawn between events,
illustrating their relationship. In this case, vehicle—soldier—backpack—pistol. Events that
start at the head of the chain are passed down the chain, stopping when “consumed” or
when the end of the chain is reached. For example, a “heal” event starts at the vehicle,
is forwarded blindly to the soldier where it is consumed, and not passed further. An
“explosion” event starts at the vehicle, where it takes damage, but then is passed along to
each object in the chain since all take damage, too.

Listing 4.50 illustrates how a chain of responsibility might look for a particular game. On
line 2, some events are “consumed” (completely handled) by the base class and no further
action is required. On line 6, damage events invoke a response from someGameObject, but
are not consumed in that other objects can respond to the damage, too. On line 10, health
pack events are consumed, so other objects in the chain do not handle them. Unrecognized
events, line 15, are not handled.

"Note, methods to set the event type are not shown.

s

* ol

8.}

5%

Ye

)

AW N =

10
11
12
13
14
15

16

19

4.5. The Game World 95

Listing 4.50: Chain of responsibility

bool someGameObject::eventHandler(Event *p_event)
// Call base class’ handler first.
if (BaseClass::eventHandler (p_event))
return true // If base consumed, then done.

// Otherwise , try to handle event myself.
if p_event -> getType() is EVENT_DAMAGE then
takeDamage (p_event -> getDamageInfo ())
return false // Responded to event, but ok to forward.
end if
if p_event -> getType() is EVENT_HEALTH_PACK then
doHeal (p_event -> getHealthInfo ())
return true // Consumed event, so don’t forward.
end if

return false // Didn’t recognize this event.

The code in Listing 4.50 is almost right — but the compiler will throw up an error at
lines 7 and 11.

4.5.5.1 Events in Dragonfly

Listing 4.51 provides the header file for the Event class. The event type string type is
a string and is set to UNDEFINED_EVENT on line 2 in the constructor. The setType() and
getType () methods change and return the event type, respectively. The virtual keyword
in front of the destructor in line 14 ensures that if a pointer to a base Event is deleted (say,
in the engine), the destructor to the child gets called, as appropriate.

Listing 4.51: Event.h

#include <string>
const std::string UNDEFINED_EVENT = "df::undefined”;
class Event {

private:
std::string m_event_type; // Holds event type.

public:
// Create base event.
Event () ;

// Destructor .
virtual “Event();

// Set event type.
void setType(std::string new_type);

// Get event type.
std::string getType() const;

4.5. The Game World 96

The base Event class is passed around to game objects. It is expected that game code
inherits from Event in defining game specific events, such as EventNuke in Saucer Shoot
(Section 3.3.8 on page 34). Dragonfly recognizes (and pass several) specific events that are
derived from Event. These “built in” events are depicted in Figure 4.2. Most of them are
defined later in this chapter as they are introduced, except for the “step” event, which is

defined next in Section 4.5.5.2.

I | I I I |

lEventCoI[ision Eventkeyboard | | EventMouse II EventOut II EventStep EventView I

Figure 4.2: Dragonfly events

4.5.5.2 Step Event

Often, a game object does something every step of the game loop. For example, a sentry
object may look around to see if there is a bad guy is within sight, or a bomb object may see
if enough time has passed and it is time to explode. Dragonfly supports this by providing
a “step” event each game loop for game objects that want to handle it.

Listing 4.52 provides the header file for the EventStep class. EventStep is derived from
the Event base class. The private attribute m_step_count is to record the current iteration
number of the game loop. Methods are provided to get and set m_step_count, as well as a
constructor to set the initial m_step_count, if desired. Other “work” done in the constructor
is to set the base event type (using setType()) to STEP_EVENT.

Listing 4.52: EventStep.h

#include " Event.h”
const std::string STEP_EVENT = "df::step”;
class EventStep : public Event {

private:
int m_step_count; // Iteration number of game loop.

public:
// Default constructor.
EventStep () ;

// Constructor with initial step count.
EventStep (int init_step_count) ;

// Set step count.
void setStepCount (int new_step_count) ;

// Get step count.
int getStepCount () const;

4.5. The Game World 97

2 J

Inside the engine, the step event is handled like any other event, in terms of being
stored and sent to Objects’ event handlers. Inside the event handler code for an Object is
where, if required, the step event is recognized and acted upon. For example, as shown in
Listing 4.53, the Points object in Saucer Shoot (Chapter 3) recognizes the step event in its
eventHandler (), counting the number of times called so it can increment the score every
30 steps (1 second).

Tip 12! Dereferencing pointers and invoking methods. To invoke an Object
method from inside the game engine, the object pointer is dereferenced. Normal
dereferencing uses ‘*’, and normal method invocation uses ‘.’. However, combined,
the preferred syntax is to use ‘=>’. For example, to check the type of a game object
named p_e, the code could be written as (xp_e) .getType (). However, the preferred
syntax, and identical functionality, is written as p_e->getType ().

Listing 4.53: Points eventHandler()

int Points::eventHandler (const Event *p_e) {

// If step, increment score every second (30 steps).
if (p_e -> getType() == df::STEP_EVENT) A
if (p_e -> getStepCount () % 30 == 0)
setValue (getValue () + 1)

}

The GameManager sends step events to each interested game object, once per game
loop. Basically, inside the game loop, the GameManager iterates over each of the Objects
in the game world and sends each of them an EventStep, with the step count set (via
setStepCount ()) to the current game loop iteration count. Listing 4.54 shows pseudo code
for sending step events to all objects in the game world. Line 2 gets all the Objects to iterate
over from the WorldManager (see Section 4.5.6 on page 99). Line 3 creates an instance of
the step event (EventStep) that will be passed to each Object, with loop_count referring
to the current iteration number of the game loop. Lines 4 to 7 iterate through all Objects
in the world, passing the step event to the Object event handlers in line 5.

Listing 4.54: Sending step events

// Send step event to all Objects.
all_objects = WorldManager getAllObjects ()
create EventStep s(game_loop_count)

for i = 0 to all_objects count
all_objects [i] -> eventHandler () with s
1li.next ()

end for

‘«:’{.,

N

4.5. The Game World 98

4.5.5.3 Casting

C—++ is a strongly typed language. Among other things, this means that values of one type
(e.g., float) can only be assigned to variables that are of the same type (e.g., float f) or
of a different type that has a known conversion (e.g., int i, where values after the decimal
point are truncated). When a type is assigned to a variable of a different type where there
is no known conversion, one of two things can happen. If the types are of different sizes and
structures, such as a struct type being assigned to an int, then the compiler produces an
error message and halts. If the types are the same size, such as a enum type being assigned
to an int, then the compiler produces a warning message but continues to compile the code.
At runtime, then, the conversion does happen (enum to int, in this example) even if that
is not what the programmer intended.

Tip 13! Heeding warnings. In general, warning messages from a compiler should
not be ignored. The compiler is indicating something is potentially amiss when it
throws up a warning. A programmer should pay attention to any warning, resolving
it whenever possible (and usually it is possible), such as, for example, casting to
indicate to the compiler that an implicit conversion is intended. Even if the current
warnings are harmless in that the code still executes fine, by ignoring them, it makes
it more likely that future warnings, that may not be harmless go unnoticed.

In game code, when the engine provides a generic event, the event handler often needs
to convert the generic event to a specific event when it determines what type it is. With
Dragonfly, the eventHandler () for an Object is invoked with a pointer to a generic event
(e.g., an Event *). Once the eventHandler () determines the event type (e.g., a step event,
EventStep) by invoking the getType () method, it can treat the event as the specific type.

In C++, this can be done with a type-cast (or just cast for short) which converts one
type to another. C+4 has different varieties of type-casts, but the one needed in this
case is the dynamic cast.'> The syntax for a dynamic cast is dynamic_cast <new_type>
(expression). For example, a dynamic cast from a base class to a derived class is written
as in Listing 4.55. The value of p_b of type Base * is converted to a different type, type
p-d.

Listing 4.55: Cast from base class to derived class

class Base {};
class Derived : public Base {};
Base *p_b = new Base;

3l Derived *p_d = dynamic_cast <Derived *> (p_b);

Generally, a dynamic_cast is used for converting pointers within an inheritance hierar-
chy, almost exclusively for handling polymorphism (see Chapter 1).

For a game developed using Dragonfly, a cast is often needed in a game object’s
eventHandler (). The eventHandler () takes as input a pointer to a generic event, or

2The C-style cast (e.g., int x = (int) 4.2) is generally replaced with a static_cast in C++.
-

- «a}:
e
* 0\

0

4.5. The Game World 99

an Event *. Once the type of the event is determined by invoking the method getType ()
and examining the string returned, the game code often acts on the event, as appropriate.
For example, in Listing 4.56 the Bullet’s eventHandler () from Saucer Shoot (Section 3.3 on
page 15) checks if the event type is a collision event (COLLISION_EVENT — see Section 4.10.1.2
for details on the collision event). If so, it acts upon it in the hit () method. Since the Bullet
needs to access methods specific to the collision event to obtain the Object collided with for
destruction, the hit () method takes a pointer to a collision event, not a generic event. This
means the Event * passed to the eventHandler () must be cast as an EventCollision *.

Listing 4.56: Cast from Event to EventCollision

int Bullet::eventHandler (const df::Event *p_e)

if p_e->getType () is df::COLLISION_EVENT then
EventCollision *p_col_e = dynamic_cast <const df::EventCollision *> (
p-e)
hit(p_col_e)
return 1
end if

4.5.6 The WorldManager

At this point, development of the game world has provided game objects, lists for those game
objects, and events along with a means of passing them to game objects. For Dragonfly, this
means the WorldManager can be designed and implemented. The WorldManager manages
game objects, inserting them into the game world, removing them when done, moving
them around, and passing along events generated by the game code. For now, this is all
the WorldManager does. Soon, however, the WorldManager’s functionality will expand to
manage world attributes, such as size and camera location, drawing and animating objects
and providing collisions and other game engine events.

The WorldManager is a singleton (see Section 4.2.1), so the methods on lines 6 to 8 are
private and line 15 provides the instance of the WorldManager. For now, the WorldManager
only has two attributes: 1) Line 10 m_updates is a list holding all the game objects in the
world; and 2) Line 11 m_deletions is a list of the game objects to delete at the end of the
current update phase.

The WorldManager constructor should set the type of the Manager to “WorldManager”
(i.e., setType("WorldManager") and initialize all attributes.

Listing 4.57: WorldManager.h

#include " Manager.h"
#include " ObjectList.h”
class WorldManager : public Manager {
private:
WorldManager (); // Private (a singleton).
WorldManager (WorldManager const&); // Don’t allow copy.
void operator=(WorldManager const&); // Don’t allow assignment.

s

Ye

5
s

13
14
15

16

19

AW =

4.5. The Game World 100

Objectlist m_updates; // All Objects in world to update.
ObjectList m_deletiomns; // All Objects in world to delete.

public:
// Get the ome and only instance of the WorldManager.
static WorldManager &getInstance ();

// Startup game world (initialize everything to empty).
// Return 0.
int startUp();

// Shutdown game world (delete all game world Objects).
void shutDown () ;

// Insert Object into world. Return 0 if ok, else —1.
int insertObject (Object *p_o);

// Remove Object from world. Return 0 if ok, else —1.
int removeObject (Object *p_o);

// Return list of all Objects in world.
ObjectList getAllObjects () const;

// Return list of all Objects in world matching type.
ObjectList objects0fType (std::string type) const;

// Update world.
// Delete Objects marked for deletion.
void update () ;

// Indicate Object is to be deleted at end of current game loop .
// Return 0 if ok, else —1.
int markForDelete (Object *p_o);

+;

The methods insertObject() and removeObject() provide a means to insert and
remove objects in the world, respectively.

The markForDelete () method is called whenever an Object needs to be destroyed in
the course of running the game. For example, when a projectile object collides with a
target object (e.g., Bullet with Saucer), the projectile may mark both itself and the target
for deletion.

The method getAllObjects() returns the m_updates ObjectList. A similar method,
objects0fType () returns a list of Objects matching a certain type. This method, shown
in Listing 4.58, iterates through all Objects in the m_updates list and each Object that
matches in type is added to the ObjectList, returned at the end.

Listing 4.58: WorldManager objectsOfType()
// Return list of Objects matching type.

// List is empty if none found.
ObjectList objects0fType (std::string type) const
ObjectList 1list
-
e,

4.5. The Game World 101

for i = 0 to m_updates count
if m_updates[i] equals type then
list.insert(m_updates [i])
end if
end for

return list

The update () method is called from the GameManager (Section 4.4.4) once per game
loop. In general, the update phase moves objects, generates collision events, etc. For now,
it will only remove objects that have been marked for deletion.

The GameManager invokes WorldManager startUp() right after the LogManager is
started. At this point, the WorldManager does not do much in startUp(), except for
calling Manager: :startUp(). Later versions of the WorldManager will set some of the
game world attributes.

When invoked (typically by the GameManager), WorldManager shutDown() deletes
all the Objects in the game world. Typically, the game code does not preserve the addresses
of game objects created to populate the world so only the WorldManager can do so. Pseudo
code for WorldManager shutDown () is shown in Listing 4.59.

Listing 4.59: WorldManager shutDown()

// Shutdown game world (delete all game world Objects).
void WorldManager ::shutDown ()

// Delete all game objects.
ObjectList ol = m_updates // Copy list so can delete during iteration.

for i = 0 to ol count
delete ol[il
end for

Manager ::shutDown ()

At this point, the Object class needs to be extended to support events. A public event
handling method, eventHandler () is declared as in Listing 4.60.

Listing 4.60: Event handler prototype

ol // Handle event (default is to ignore everything).
1| // Return 0 if ignored, else 1 if handled.

o| virtual int eventHandler (const Event *p_e);

The implementation body of the eventHandler () method should do nothing, merely
returning 0 indicating that the event was not handled. However, the keyword virtual
ensures that derived classes (such as Saucer and Hero) can define their own specific event
handlers. The keyword const indicates the event handler cannot modify the attributes
of the event pointed to (p_e) — this is because the same event may be passed to multiple
Objects.

The Object constructor needs to be modified also. Specifically, it needs to add the
Object itself to the game world. A code fragment for this is shown in Listing 4.61. Since
parent constructors are automatically called from derived classes, a derived object created

-
‘Oﬁﬁ,‘
°
* 0\

4.5. The Game World 102

by the game programmer (e.g., a Hero) calls the Object constructor, causing the object to
automatically have itself added to the game world.

Listing 4.61: Object Object()
ol // Construct Object. Set default parameters and
1| // add to game world (WorldManager).
2| Object::0bject ()

4 // Add self to game world.
5 WorldManager insertObject (this)

Similarly, the destructor needs to remove the Object from the game world. A code
fragment for this is shown in Listing 4.62. In a fashion similar to the constructor, when a
derived object is destroyed, the parent destructor is called, removing the Object from the
game world.

Listing 4.62: Object ~Object()

ol // Destroy Object.
1| // Remove from game world (WorldManager).
2| Object:: " 0bject ()

| // Remove self from game world.
5 WorldManager removeObject (this)

4.5.6.1 Deferred Deletion

During the update phase of a game loop, a game object (with a base Object class) may
be tempted to delete itself (calling delete) or another game object, perhaps as a result of
a collision or after a fixed amount of time. But such an operation would likely be carried
out somewhere in the middle of the update loop, so the iteration would be in the middle of
going through the list of game world Objects. This may mean other Objects that are later
in the iteration act on the recently deleted Object!

To illustrate these issues, consider an example game where darts are thrown at colored
balloons for points. When a dart and a balloon collide, the WorldManager sends a collision
event to both the dart and the balloon. The balloon, upon getting the collision event,
destroys itself. The dart upon getting a collision, may also destroy itself. So far so good.
However, what if the dart also queries the balloon to see check the balloon’s color so as to
add the right number of points (say, popping red balloons earns more points than popping
green balloons). If the balloon has been deleted there is no way to do this! In fact, the
code will compile and run, but will most likely result in a memory violation error and crash
during gameplay. Moreover, objects, in general, should very rarely use delete this to be
removed. It is legal, but should only be done carefully under delicate circumstances.

A cleaner, safer method of removing game objects from the game world is via the
markForDelete () method in the WorldManager. Basically, an Object that is ready to be
destroyed or an Object that is ready to destroy another Object indicates this by telling the
WorldManager to delete the Object at the end of the current update phase. Pseudo-code
for the WorldManager’s markForDelete() is shown in Listing 4.63. The top code block

-
“fi:",
°
* 0\

4.5. The Game World 103

makes sure not to add the Object more than once. Failure to do so would mean that if
an Object was marked more than once, delete would be called on an already de-allocated
block of memory. If the last line of the method is reached, the Object had not been added
so the list so it is added.

Listing 4.63: WorldManager markForDelete()

// Indicate Object is to be deleted at end of current game loop .
// Return 0 if ok, else —1.
int WorldManager ::markForDelete (Object *p_o)

// Object might already have been marked, so only add once.

for i = 0 to m_deletions count
if m_delections [i] is p_o then // Object already in list.
return 0O // This is still 7ok”.
end if
end for

// Object not in list, so add.
m_deletions.insert (p_o)

With the addition of the above code, some “unusual” code in the tutorial can be
explained. Specifically, when a Saucer is created via new the pointer is not saved (i.e.,
new Saucer;). Normally, this would look like a potential source of a memory leak in that
memory is allocated, but it is not clear it can be de-allocated with a corresponding delete
since the pointer value is lost. However, having now written the constructor for Object, the
pointer this is passed to the WorldManager where it is stored in the m_updates list. When
the time comes to destroy the Object, the request is made to the WorldManager to mark
this Object for deletion, which then does call delete.

4.5.6.2 The Update Phase

With the new Object code in place, and the markForDelete () method available, the World-
Manager’s update () can be defined. Pseudo-code for WorldManager update () is shown in
Listing 4.64.

Lines 5 to 8 iterate through all Objects that have been marked for deletion, actually
deleting them by calling delete in line 8. Line 11 clears the deletion list (so there are no
Objects in it) to get ready for the next phase.

Listing 4.64: WorldManager update()

// Update world.
// Delete Objects marked for deletion.
void WorldManager ::update ()

// Delete all marked Objects.

for i = 0 to m_deletions count
delete m_deletions [i]
end for

// Clear list for next update phase.
m_deletions.clear ()

s

Ye

5
s}

4.5.

The Game World 104

4.5.7 Program Flow for Game Object Lifetime

This section provides a summary of the lifetime in Dragonfly for Objects when they are
created and destroyed.
When a game object, derived from Object (e.g., Saucer), is created:

1.

2.

5.

The game program (e.g., game.cpp) invokes new, say new Saucer.

The base Object constructor, Object (), is invoked first before the game object con-
structor, (e.g., before Saucer()).

. The Object constructor, Object (), calls WorldManager insertObject () to request

being added to the game world.

WorldManager insertObject() calls insert() on the m_ updates ObjectList, thus
adding the game object to the game world.

Any remaining code is the derived constructor, Saucer (), is run.

When a game object is finished, ready to be destroyed:

1.

The game program (e.g., game code in Saucer) calls WorldManager markForDelete (),
indicating the Object is ready to be deleted.

WorldManager markForDelete () calls m_deletions.insert() to add the object to
the m_deletions ObjectList.

GameManager run() calls WorldManager update () at the end of the current game
loop iteration.

At the end of the update() method, the WorldManager iterates through the m_-
deletions ObjectList, calling delete on each Object in the list. The delete triggers
the derived Object’s destructor (e.g., ~Saucer ()).!3

After the derived Object’s destructor (e.g., “Saucer ()) is run, it calls the base class
destructor, Object “Object ().

The Object destructor, “0bject (), calls WorldManager removeObject (), requesting
the WorldManager to remove the Saucer from the game world.

WorldManager removeObject () calls remove () on the m_updates ObjectList, remov-
ing the saucer from the game world.

3Remember, in C++, delete invokes an object’s destructor and frees memory allocated by new.

s

Ye

5
s

4.5. The Game World 105

4.5.8 Dragonfly Testing

This section provides some basic advice for getting started with game engine testing suitable
for completing Dragonfly Egg. The idea is to test functionality, both large and small, in
a modular fashion and, where possible, isolate the test code from the game engine code.
Small here, means individual methods, but also building up combined use of methods to
test integrated functionality. Large here means integrating functionality from several classes
(e.g., testing the GameManager). A detailed treatment of testing is provided in the “Taking
Flight” chapter.

For Dragonfly Egg development, initial testing is most easily done by isolating test code
in a function and calling it from main (). Each test, large and small, should be in a separate
function, allowing each function to be called individually. Commenting out individually test
functions can be done to “turn off” tests that are not needed at that time, but still keeping
the code around for later use. This latter idea — running a full set of tests, including tests
that have previously “passed” — is commonly called regression testing and can be valuable
for catching bugs that might arise in previously written code when adding new, seemingly
unrelated, code.

An example of the suggested testing is shown in Listing 4.65. There are two tests written,
testClock timing () and testStepEvent (), that correspondingly test if the timing aspects
of the Clock class and step events are working properly. Each function returns true if the
test passes and false if it fails. In main(), the individual functions are called with the
success/failure of the individual tests indicated. A tally of passes and failures could easily be
added (e.g., tests_taken++ and tests_passed++) and a summary provided (e.g., test_-
passed out of test_taken). The test functions themselves should write liberally to the
logfile in order to confirm that tests pass and, when they fail, help to figure out why.

Listing 4.65: Isolating test functions

// Test fucntion prototypes.
bool testClock_timing ()
bool testStepEvent ()

main () {
if (testClock_timing ())
puts (" Pass”)
else
puts (" Fail”)

if (testStepEvent ())
puts (" Pass”)

else
puts (" Fail")

An example of a testClock_timing() function is shown in Listing 4.66. The function
creates a Clock object, with the timing aspects in the sleep() and split() calls starting
on line 6. If the split time is not 1 on line 13, then an error is logged and false is returned.
Otherwise, the function passes and true is returned. Note, __func__ on line 19 is a built-in
constant string that holds the name of the calling function (i.e., “testClock_timing()” in
this example).

-
“fi:",
°
* 0\

4.6. Development Checkpoint #4 — Dragonfly Eqq! 106

Listing 4.66: testClock_timing()

ol // Test the Clock class wusing second granularity .

1| // (Note, finer timer granularity should be tested , too.)
2l bool testClock_timing (void) {
3
|

df :: Clock clock;

5| clock.delta(); // Start time.

6 sleep(1); // Adjust to Mac/Linuz/Windows .

7 int t = (int) clock.split() / 1000000; // About 1 second.

9 // Print time to logfile for debugging.
10 LM.writeLog (" split time t is %d", t);

12 // See if reported 1 second as expected.

13 if (¢t !'= 1) {

14 LM.writeLog (" split time t is %d”, t);
15 return false;

16 T

17

| // If we get here, test has passed.

19 LM.writeLog ("%s passed.\n", __func__);
20 return true;

As a final note, be aware that writing good tests — tests that inform whether or not code
is working — takes time and skill, just like writing game engine code. The more you do, the
better you get. Similarly, interpreting test failures takes time and skill. For tests that fail,
additional work is involved in fixing the bugs they might be revealed. Make sure to re-run
failed test after fixing the bug to be sure it is really fixed! And keep such tests around for
future regression testing. All of this becomes easier with practice.

4.6 Development Checkpoint #4 — Dragonfly Egg!
Your Dragonfly development should continue!

1. Create the base Event class referring to the header file in Listing 4.51. Add Event.cpp
to the project and stub out each method so it compiles. Testing should primarily
ensure that it compiles, but make a stand alone program that sets (setType()) and
gets (getType()) the event type for thoroughness.

2. Create the derived EventStep class based on the header file in Listing 4.52. Add
EventStep.cpp to the project and stub out each method so it compiles. As for the
Event class, testing should primarily ensure that it compiles, but create test code to
be sure event types can be get and set for this derived class.

3. Add an event handler method to the Object class, based on Listing 4.60. Test by
creating a simple game object derived from the Object class (e.g., a Saucer) and
spawning (via new) several in a program. Define the class’ eventHandler () methods
to recognize a step event. Pass in both EventStep events and Events and see that

»
» 0%
N,
»
.\
\

4.6. Development Checkpoint #4 — Dragonfly Eqg! 107

they are recognized properly. Verify this with output messages to the screen and/or
logfile.

4. Create the WorldManager class based on the header file in Listing 4.57. Add World-
Manager . cpp to the project and stub out all methods, making sure the code compiles.

5. Write the bodies for WorldManager methods insertObject(), removeObject(),
getAllObjects() and objects0fType(). Create a stand alone program that tests
that these methods work. Test by inserting multiple objects and removing some and
then all, verifying each method works as expected. Use messages written to either
the screen or logfile, both inside the methods and outside the WorldManager to get
feedback.

6. Write code to extend the Object constructor and destructor to add and remove itself
from the WorldManager automatically. Refer to Listing 4.61 and Listing 4.62 as
needed. Test by using the derived game objects (e.g., Saucers) and spawning (via
new) them in a program. Verify they are removed when deleted via delete for now.

7. Write the WorldManager markForDelete () method, referring to Listing 4.63 as needed.
Write the WorldManager update (), too, at this time since update() and markFor-
Delete() are easiest to test together. Test by spawning several derived game objects
(e.g., Saucers), then marking some of them for deletion. Calling update() should
see those Objects removed. Verify this with extensive messages to the screen and/or
logfile.

8. Add functionality to the GameManager run loop. This includes doing the following
once per game loop: 1) getting a list of all Objects from the WorldManager and
sending each Object a step event (see Listing 4.54), and 2) calling WorldManager
update().

At this point, it is suggested to review the Dragonfly code base thus developed. First,
to refresh the design and implementation done thus far. Second, to be sure code has been
integrated into a single engine and the full set of functionalities implemented have been
tested. If implementation has keep pace with the book, development should have come a
long way! A game programmer can write game code to:

1. Start the GameManager. The GameManager should start the LogManager and the
WorldManager, in that order.

2. Populate the game world. This means creating a class derived from Object (e.g., a
Saucer) and spawning one or more objects (via new). The class constructor for Object
has each instance add itself to the WorldManager. The Objects can set their initial
positions.

3. Run the GameManager (via run()). The GameManager executes the game loop with
controlled timing (using the Clock class). Each iteration, the GameManager gets the
list of game objects from the WorldManager, then iterates through the list, sending
each Object a step event.

-
“fi:",
°
* 0\

4.6. Development Checkpoint #4 — Dragonfly Eqq! 108

4. The GameManager also calls update () in the WorldManager, which iterates through
the list of all Objects marked for deletion, removing each of them via delete.

5. Objects handle the step event in their eventHandler () methods. The derived game
object (e.g., Saucer) should actually define the behavior. At this point, a game object
can “move” itself by changing its position to demonstrate functionality. Objects can
write messages (e.g., (x,y) position) to the screen or logfile to show behavior.

6. After some condition (e.g., a game object has moved 100 steps), the game can be
stopped by invoking GameManager setGameOver () method.

7. The engine can gracefully shut everything down by invoking GameManager shutDown ().
This should shutdown the WorldManager and the LogManager, in that order.

For the game programmer, this means creating one or more derived game objects classes
(derived from Object), and one or more “games” (each with a separate main()) that can
be used to test, debug and demonstrate robust behavior from the engine.

The full set of the above functionality is a good start — the foundation of a game engine.
Put another way, the base code thus far is a Dragonfly egg* that, with the help of the rest
of this book, will hatch and grow into a fully functioning Dragonfly game engine.

Tip 14! Source code control. In developing Dragonfly (and most other software
projects of significant size), it is strongly urged to use a source code control (also
called wersion control) system. Source code control systems help mange changes
to computer programs, associating files by time and version names. While such
features are critical for development teams, they are often helpful for independent
developers, too, providing invaluable check pointing for working code. Checking
in working versions of Dragonfly, say Egg, can help by preserving working code if
future development breaks the code base. Similarly, source code control can provide
a backup in case code is lost (e.g., a disk failure). Local source code control systems
that do not back up over the network (e.g., RCS) should be periodically copied to
another location (alternate local storage or, better, offline to another machine or
cloud storage) in case of computer hardware failure.

* Did you know (#4)7 Dragonflies start out their lives as eggs laid in water. A Dragonfly can lay as
many as 100,000 eggs. — “Frequently Asked Questions about Dragonflies”, British Dragonfly Society, 2013.

-

- «a}:
e
* 0\

N =

= W

4.7. Sending FEvents 109

4.7 Sending Events

While the only event Dragonfly handles right now is the step event, sent to each Object
every iteration of the game loop, the engine will soon have more events and will need to send
those events to Objects, as well. For efficiency and convenience, the code that currently
resides in the GameManager to send events should be moved into the base Manager class.
That way, derived Managers that handle events, say keyboard events, can send the events
to the game objects.

To do this, the Manager is extended with an onEvent () method, shown in Listing 4.67.
The code is the same as that in the GameManager that sends the step event to all Objects
(Listing 4.54).

Listing 4.67: Manager onEvent()

// Send event to all Objects.

// Return count of number of events sent.

int Manager::onEvent(const Event *p_event) const
count = 0

all_objects = WorldManager getAllObjects ()

for i = 0 to all_objects count
all_objects [i] -> eventHandler () with p_event
increment count

end for

return count

Once onEvent () is defined, the GameManager code in Listing 4.54) needs to be removed
and replaced with:

Listing 4.68: GameManager providing step event

// Provide step event to all Objects.
EventStep s;
onEvent (&s) ;

Note, the return value from onEvent () is not used here. However, the same onEvent ()
method can be used for user-defined events, such as the “nuke” event in the Saucer Shoot
tutorial (see Section 3.3.8 on page 34). The count of events sent returned by onEvent ()
may be useful for game programmer code.

4.8 Display Management

While games are much more than just pretty visuals, graphical output is an important, if
not the most important, element of a computer game. As previously noted, Dragonfly is a
text-based game engine (see Section 3.2 for why), using the Simple and Fast Multimedia
Library (SFML) to help with drawing characters on the screen, described next.

s

Ye

5
s

4.8. Display Management 110

4.8.1 Simple and Fast Multimedia Library — Graphics

The Simple and Fast Multimedia Library (SFML) provides a relatively easy interface for
displaying graphics and playing sounds, as well as gathering input from the keyboard and
mouse. SFML has been ported to most major platforms, including Windows, Linux and
Mac, and even to iOS and Android mobile platforms. SFML is free and open-source, under
the zlib/png license.

For graphics output, SFML provides a graphics module for 2D drawing. The graphics
module makes use of a specialized window class, sf::RenderWindow. Creating a window
(which will pop open on the screen) can be done with the code in Listing 4.69.

Listing 4.69: SFML window
#include <SFML/Graphics.hpp>

// Create SFML window .

int window_horizontal = 1024

int window_vertical = 768

sf::RenderWindow window(sf::VideoMode ({horizontal, verticall}), " Title —
Dragonfly”, sf::Style::Titlebar)

// Turn off mouse cursor for window.
window.setMouseCursorVisible (false)

// Synchronize refresh rate with monitor.
window.setVerticalSyncEnabled(true)

5| // When done.

window.close ()

The first argument for an sf: :RenderWindow is the video mode that defines the size of
the window (the inner size, not including the title bar and borders). Listing 4.69 creates
a window of 1024x768 pixels. The second argument, the string “Title - Dragonfly”, is the
title of the window. The third argument provides the window style, here in the form of a
title bar. The third argument is actually optional — not including it will provide the default
style of a title bar with resize and close buttons.

For a text-only window, such as in Dragonfly, it is often useful to hide the mouse cursor
when the mouse is over the window. This is done with the setMouseCursorVisible () call,
passing in false. The cursor can be shown, of course, by passing in true, too.

If the game engine drawing rate is faster than the monitor’s refresh rate, there may be
visual artifacts such as tearing. Synchronizing the SFML refresh rate with the monitor’s
refresh rate is done by setVerticalSyncEnabled (). This is only called once, after creating
the window.

When use of the window is done, close () closes the window and destroys all the attached
resources.

Before drawing any text, SFML needs to have the font loaded using the sf: :Font class.
Typically, the font is loaded from the file system using the openFromFile () method as in

s

Ye

5
s

4.8. Display Management 111

Listing 4.70. The string “df-font.ttf”'* is the name of the font file, supporting most standard
formats. Note, the exact path to the font file must be provided since SFML cannot directly
access any standard fonts installed on the system.

Listing 4.70: SFML font

ol sf::Font font
if (font.openFromFile ("df—font.ttf”) == false) then
// Error.

end if

W e

To draw text, the sf::Text class is used, as in Listing 4.71. The sf::Text object
is created using a previously loaded font, as in Listing 4.70. The method setString()
provides the string to be displayed. The method setCharacterSize() sets the character
size, in pixels not point size. The method setFillColor () sets the text color to a type
sf::Color, with built in color choices of Black, White, Red, Green, Blue, Yellow, Magenta
and Cyan (each needs to be pre-pended with sf: :Color: :). The method setStyle() sets
the text style, in this case bold and underlined. setPosition() sets the location on the
window (in pixels) to draw the text.

Listing 4.71: SFML text

ol // Create text with pre—loaded font (from Listing 4.70).
sf::Text text(font)

1
3| // Set display string.
i| text .setString (" Hello , world!")

6| // Set character size (in pizels).
7| text .setCharacterSize (24)

ol // Set color.
10l text .setFillColor (sf::Color::Red)

12| // Set style.
13| text.setStyle(sf::Text::Bold | sf::Text::Underlined)

15| // Set position on window (in pizels).
16| text .setPosition ({100, 503})

'The Dragonfly engine (http://dragonfly.wpi.edu/engine/) includes the default Dragonfly font file
“df-font.ttf” that can be used for development.

4.8. Display Management 112

Tip 15! SFML text positions. By default, SFML entities (such as text) are
positioned relative to their top-left corner. For example, if a character is drawn at
SFML location (0,0), this means the upper left corner of the character is at pixel
location (0,0) and the character will be fully visible. This is probably what is wanted
in most cases. However, it does mean that any SFML lines (that are pixel-based)
drawn from, say, the location of one character (space) to another will not appear
centered on the character. If needed, the drawing of a character relative to the
SFML position can be adjusted by the setOrigin() call. Or, an SFML position
could be adjusted to reflect the character center by moving it down by half the
character height and right by half the character width.

Once setup, the text can be drawn on the window. Drawing text requires a few steps,
illustrated by example in Listing 4.72. The clear () method clears the window and is usually
called each game loop right before drawing commences. Note, as an option, clear() can
also be given a background color to paint the window (e.g., clear(sf::Color: :Blue)).
The draw() method draws the text on the window, but does not actually display it yet.
The display () method displays on the window everything that has been drawn.

Listing 4.72: SFML drawing text

ol // Clear window and draw text.
1| window.clear () ;

2| window.draw (text) ;

3| window.display () ;

Putting it together, a “Hello, world!” sample is shown in Listing 4.73, demonstrating
the basic SFML graphics needed for Dragonfly. In Listing 4.73, the top part loads the font,
as in Listing 4.70. The next part sets up the text field to display, as in Listing 4.71. The
main loop at the while() repeats drawing the text as in Listing 4.72, then checking if the
window has been closed. Once the window is closed, main() will return and the process
stopped.

Listing 4.73: SFML Hello, world!

0| #include <iostream> // for std::cout
#include <SFML/Graphics.hpp>

1
2
35| int main () {
1

// Load font.
6 sf::Font font;

7 if (font.openFromFile ("df—font.ttf"”) == false) {

8 std::cout << " Error! Unable to load font 'df—font.ttf '.” << std::endl;
9 return -1;

10 T

12 // Setup text to display.

13 sf::Text text (font);

14| text.setString (" Hello, world!"); // Set string to display.

15| text.setCharacterSize (32); // Set character size (in pizels).
16 text.setFillColor (sf::Color::Green); // Set text color.

s

* ol

8.}

5%

Ye

26

29

4.8. Display Management 113

text.setStyle(sf::Text::Bold); // Set text style.
text .setPosition ({96,134}); // Sel text position (in pizels).

// Create window to draw on.
sf::RenderWindow *p_window =
new sf::RenderWindow (sf::VideoMode ({400, 300}), "SFML — Hello, world!")

if (!p_window) {
std::cout << " Error! Unable to allocate RenderWindow.” << std::endl;
return -1;

}

// Turn off mouse cursor for window.
p_window -> setMouseCursorVisible (false);

// Synchronize refresh rate with monitor.
p_window -> setVerticalSyncEnabled(true);

// Repeat forever (as long as window is open).
while (1) {

// Clear window and draw text.
p_window -> clear();

p_window -> draw(text) ;
p_window -> display();

// See if window has been closed.
while (const std::optional<sf::Event> p_event = p_window -> pollEvent ()
) {

if (p_event -> is<sf::Event::Closed>()) {
p_window -> close();
delete p_window;
return O;
}
Y} // End of while (event).

Y // End of while (1).

Y // End of main().

Note, treating the SFML window as a pointer (sf: :RenderWindow *) starting on Line 21
is not strictly necessary (after all, it is not a pointer in Listing 4.69), but it more closely
mimics use by the DisplayManager (described in the next section) so is used in this example.

4.8.2 The DisplayManager

This section introduces the DisplayManager. Before doing so, however, a way for Dragonfly
to support color is provided.

4.8. Display Management 114

4.8.2.1 Color

Life is better with color, and so are most games!™ Since the DisplayManager will support
such game-enhancing color, it is helpful for the engine and the game programmer to define
Dragonfly colors in a separate header file. Listing 4.74 shows Color.h which has an enum
Color that provides for the built-in colors Dragonfly recognizes. For drawing functions
where no color is specified, COLOR_DEFAULT is used. The enum Color should be in the df: :
namespace, too, similar to the other Dragonfly type and class definitions.

Listing 4.74: Color.h

// Colors Dragonfly recognizes.
enum Color {
UNDEFINED_COLOR = -1,
BLACK = 0,
REDP
GREEN ,
YELLOW,
BIEUER
MAGENTA ,
CYAN,
WHITE,

g

// If color not specified, will use this.
const Color COLOR_DEFAULT = WHITE;

The DisplayManager is a singleton class derived from Manager. Thus, as described in
Section 4.2.1 on page 54, the DisplayManager has private constructors and a getInstance ()
method to return the one and only instance. The header file, including class definition, is
provided in Listing 4.75.

The DisplayManager constructor should set the type of the Manager to “DisplayMan-
ager” (i.e., setType ("DisplayManager") and initialize all attributes.

Line 6 has a #include for Vector.h since the DisplayManager draws characters on the
screen at a given (x,y) location provided by a Vector object. A #include for Color.h is
also included since the Dragonfly colors are used for drawing.

The next section, starting at line 8, provides the default settings for the Dragonfly
window rendered on the screen. These include horizontal and vertical pixels, horizontal
and vertical characters, window style, color and title and the font file to used for drawing
characters. Note, the background color (WINDOW_BACKGROUND_COLOR_DEFAULT on on Line 14)
is actually of type sf::Color and not type df::Color in order to make drawing more
efficient by not having to map the background color, which does not change much, for every
character drawn.

The private attributes starting on line 24 store the important window attributes. Note
that the SFML window is stored as a pointer on line 25 since this allows the window to be
allocated during startup, instead of when the DisplayManager is instantiated.

* Did you know (#5)?7 Newly-emerged dragonflies usually have muted colors and can take days to
gain their bright, adult colors. Some adults change color as they age. — “Frequently Asked Questions about
Dragonflies”, British Dragonfly Society, 2013.

s

Ye

5
s

4.8. Display Management 115

The startUp() method gets the SFML display ready, calling many of the SFML func-
tions shown in Listings 4.69 and 4.70.

The shutDown() method closes the SFML window calling close() and de-allocates
memory.

The drawCh () method uses SEML fonts and the SEFML draw () method (see Listing 4.72)
to draw the indicated character at the (x,y) location specified by the position and color.

The methods getHorizontal () and getVertical() return the horizontal and vertical
character limits of the window, respectively. Similarly, the methods getHorizontalPixels()
and getVerticalPixels() return the horizontal and vertical pixel limits of the window,
respectively.

For drawing, the DisplayManager uses p_window, a pointer to an SFML sf: :Render-
Window. Most 2d and 3d graphics setups have two buffers — one for the current window being
displayed and the second for the one being drawn. When the new window is ready to be
displayed, it is swapped with the current window. The DisplayManager does not need this
mechanism since the draw() method effectively does this swapping. The swapBuffers()
provides this feature. The method getWindow() returns the SFML window, which can be
useful for game code that wants to make use of additional SFML features beyond drawing
characters.

Listing 4.75: DisplayManager.h

// System includes.
#include <SFML/Graphics.hpp>

// Engine includes.
#include " Color.h"
#include " Manager.h"
#include " Vector.h”

// Defaults for SFML window .

const int WINDOW_HORIZONTAL_PIXELS_DEFAULT = 1024;

const int WINDOW_VERTICAL_PIXELS_DEFAULT = 768;

const int WINDOW_HORIZONTAL_CHARS_DEFAULT = 80;

const int WINDOW_VERTICAL_CHARS_DEFAULT = 24;

const int WINDOW_STYLE_DEFAULT = sf::Style::Titlebar;

const sf::Color WINDOW_BACKGROUND_COLOR_DEFAULT = sf::Color::Black;

const std::string WINDOW_TITLE_DEFAULT = " Dragonfly”;

const std::string FONT_FILE_DEFAULT = "df—font.ttf";

class DisplayManager : public Manager {

private:

DisplayManager () ; // Private (a singleton).
DisplayManager (DisplayManager consté&); // Don’t allow copy.

void operator=(DisplayManager consté&); // Don’t allow assignment
sf::Font m_font; // Font used for ASCII graphics.
sf::RenderWindow *m_p_window; // Pointer to SFML window .

int m_window_horizontal_pixels; // Horizontal pizels in window.
int m_window_vertical_pixels; // Vertical pizels in window.

int m_window_horizontal_chars; // Horizontal ASCII spaces in window.
int m_window_vertical_chars; // Vertical ASCII spaces in window.

39

4.8. Display Management 116

public:
// Get the ome and only instance of the DisplayManager.
static DisplayManager &getInstance ();

// Open graphics window, ready for text—based display.
// Return 0 if ok, else —1.
int startUpQ);

// Close graphics window.
void shutDown () ;

// Draw character at window location (z,y) with color.
// Return 0 if ok, else —1.
int drawCh(Vector world_pos, char ch, Color color) const;

// Return window’s horizontal mazimum (in characters).
int getHorizontal () const;

// Return window’s vertical mazimum (in characters).
int getVertical () const;

// Return window’s horizontal mazimum (in pizels).
int getHorizontalPixels () const;

// Return window’s wvertical mazimum (in pizels).
int getVerticalPixels () const;

// Render current window buffer.
// Return 0 if ok, else —1.
int swapBuffers () ;

// Return pointer to SFML graphics window.
sf::RenderWindow #*getWindow () const;

g

In more detail, the startUp() method does the steps shown in Listing 4.76. The first
block of code is a redundancy check to see if the SFML window (p_window) is already
allocated. If so, that indicates an SFML window was already created (probably, due to Dis-
playManager startup() already having been called) and the method returns, but indicates
no error. Note, p_window should be initialized to NULL in the DisplayManager constructor.

After that, the mouse cursor is turned off and the drawing refresh rate is synchronized
with the monitor and the engine font is loaded from the file (FONT_FILE DEFAULT). Impor-
tant! Make sure to use the DisplayManager attribute for the font variable (i.e., m_font)
and not the locally declared font variable (i.e., font).

If the window can be created and the font loaded, the Manager startUp() method is
called, which sets is_started is to true. Later, upon a successful shutDown() it is set to
false by calling Manager shutDown ().

Listing 4.76: DisplayManager startUp()

// Open graphics window, ready for text—based display.
// Return 0 if ok, else return —I1.
int DisplayManager ::startUp ()

N

s w

4.8. Display Management 117

// If window already created, do nothing.
if p_window is not NULL then

return ok // mo more work to do, but ok
end if

create window // an sf::RenderWindow for drawing
turn off mouse cursor
synchronize refresh rate with monitor
load font
if everything successful then
call Manager::startUp ()
return ok
else

return error
end if

As noted, Dragonfly is text-based in that game programmers render graphics through
displaying 2d ASCII art on the game window. Since SFML is fundamentally pixel based,
not text-based, it is useful to have functions that convert (x,y) pixel coordinates to (x,y)
text coordinates and vice versa. In turn, these functions make use of helper functions
to compute the character height and width (in pixels) based on the dimensions of the
game window. Listing 4.77 shows the full list of helper functions. These are declared in
DisplayManager.h and defined in DisplayManager . cpp, but are utility-type functions, not
methods in the DisplayManager class. Since they are not general game-programmer utilities,
but instead depend upon the display characteristics (e.g., the horizontal and vertical pixels
of the window), they are also not part of utility.h.

Listing 4.77: DisplayManager drawing helper functions

// Compute character height in pizels, based on window size.
float charHeight () ;

// Compute character width in pizels , based on window size.
float charWidth () ;

// Convert ASCII spaces (z,y) to window pizels (z,y).
Vector spacesToPixels (Vector spaces);

// Convert window pizels (z,y) to ASCII spaces (z,y).
Vector pixelsToSpaces (Vector pixels);

The function charHeight () computes and returns the height (in pixels) of each charac-
ter, which is number of vertical pixels (DisplayManager getVerticalPixels()) divided by
the number of vertical characters (DisplayManager getVertical()). Similarly the function
charWidth() computes and returns the width (in pixels) of each character, which is number
of horizontal pixels (DisplayManager getHorizontalPixels()) divided by the number of
horizontal characters (DisplayManager getHorizontal()).

Then, to convert spaces to pixels in spacesToPixels(), the x coordinate is multi-
plied by charWidth() and the y coordinate is multiplied by charHeight (). Conversely, in

‘vﬁﬁ.,
-
L4 \\

4.8. Display Management 118

pixelsToSpaces(), the x coordinate is divided by charWidth() and the y coordinate is
divided by charHeight ().

With the helper functions in place, the drawCh() method does the steps shown in
Listing 4.78.

The first step starting on line 4 makes sure the SFML window has been allocated (it
should have been if the DisplayManager has been successfully started).

Next, on line 10 spaces are converted to pixels. This provides the location on the SFML
window where the character will be drawn.

In SFML, ASCII text is “see through” in that any characters behind show through,
generally unexpected for the Dragonfly game programmer. To avoid this, a rectangle in
the same color as the window background is drawn, effectively hiding any previously drawn
characters. An sf::RectangleShape is used for this, setting the size, color and position
with setSize(), setFillColor () and setPosition(), respectively. The charWidth()/10
and charHeight () /5 statements are micro-adjustments (added to the x,y pixel position)
to put the rectangle directly under the character. Without these, the rectangle is a bit
off-center in relation to the character. The method draw() on line 12 draws the rectangle
on the window first, before the character is drawn on top.

The character to be drawn is embedded in an sf::Text object in the steps starting on
line 20, using setString() to actually set the text string to the desired character. Making
the character bold with on line 23 is optional, but it tends to make all the graphics “pop”
a bit more.

Before actually drawing the text character, it needs to be scaled to the right size using
setCharacterSize (). The scaling depends upon whichever is smaller, the character width
or the character height, checked in line 26.

The drawing color specified in Dragonfly (e.g., df : : YELLOW) needs to be mapped to the
corresponding SFML color (e.g., sf::Color::Yellow). This is easily and efficiently done
in a switch() statement, shown on line 32. If the df: :Color in color code is not defined
by the engine (the switch’s default), the engine should log a warning message and draw
with the default color (i.e., the same as df : : COLOR_DEFAULT, specified in Listing 4.74).

Lastly, the text is positioned at the right pixel location (line 43) and the character is
drawn with the sf::Text draw() method.

Note, although not strictly necessary, both the sf: :rectangle and the sf: : text objects
are declared as static so as not to re-allocate them each time.

Listing 4.78: DisplayManager drawCh()

// Draw a character at window location (x,y) with color.
// Return 0 if ok, else —1.
int DisplayManager ::drawCh(Vector world_pos, char ch, Color color) const

// Make sure window is allocated.
if p_window is NULL then

return error
end if

// Convert spaces (z,y) to pizels (z,y).
Vector pixel_pos = spacesToPixels (world_pos)

// Draw background rectangle since text is "see through” in SFML.

s

Ye

5
s}

= O

W N

BOs R A A R A A R D W W W W W W W W W W N
© 0 N O A W = O © 0> s ¢

4.8. Display Management 119

static sf::RectangleShape rectangle

rectangle.setSize (sf::Vector2f (charWidth (), charHeight ()))

rectangle.setFillColor (WINDOW_BACKGROUND_COLOR_DEFAULT)

rectangle.setPosition ({pixel_pos.getX() - charWidth () /10,
pixel_pos.getY () + charHeight ()/5})

p_window -> draw(rectangle)

// Create character text to draw.

static sf::Text text(m_font)

text.setString (ch)

text.setStyle (sf::Text::Bold) // Make bold, since looks better.

// Scale to right size.
if (charWidth() < charHeight ()) then
text.setCharacterSize (charWidth () * 2)
else
text.setCharacterSize (charHeight () * 2)
end if

// Set SFML color based on Dragonfly color.
switch (color)
case YELLOW:
text.setFillColor (sf::Color::Yellow)
break;
case RED:
text.setFillColor (sf::Color::Red)
break;

end switch

// Set position in window (in pizels).
text.setPosition ({pixel_pos.getX(), pixel_pos.getY()})

// Draw character .
p_window -> draw(text)

return 0 // Success.

Note, the multiplier 2 on Lines 27 and 29 scale the text to typical terminal dimensions
(such as you might see in a Linux shell). These characters, and characters in general, tend
to be rectangle shaped, somewhat taller than they are wide. For a game that needs square
cells, the multiplier can be set to 1. The characters will still appear normal, but there
will be some horizontal (empty) padding to make the characters effectively squares on the
screen.

The swapBuffers() method does the steps shown in Listing 4.79. Basically, after
checking if the window p_window is allocated, the SFML display () method is invoked to
make all changes since the previous refresh visible to the player). Then, the SEFML method
clear () is called immediately to get ready for the next drawing. It may seem counter-
intuitive to clear the window right after drawing, but remember that there are actually two
buffers in use here — one that is currently being displayed, made so by the display () call,
and one that is going to be drawn on and then displayed the next game loop. This second
buffer is the one that is cleared with the clear() call.

4.8. Display Management 120

Listing 4.79: DisplayManager swapBuffers()

ol // Render current window buffer.
1| // Return 0 if ok, else —1.
2| int DisplayManager ::swapBuffers ()

| // Make sure window is allocated.
5 if p_window is NULL then

6 return error

7 end if

of // Display current window.
10 p_window -> display()

12 // Clear other window to get ready for next draw.
13 p_window -> clear ()

15 return 0 // Success.

4.8.3 Using the DisplayManager

With the DisplayManager in place, the Object class can be extended to support using it.
Specifically, the Object is given a virtual method for drawing, shown in Listing 4.80.

Listing 4.80: Object draw()

0| public:
1 virtual int draw();

The Object draw () method does nothing itself, but can be overridden by derived classes.
For example, the Star in Saucer Shoot (Section 3.3) defines the draw() method as in List-
ing 3.6 on page 39. When the draw() method for a Star is called, the Star invokes the
drawCh () method of the DisplayManager, giving it the position of the Star and the char-
acter to be drawn (a ¢.”).

With draw () defined for each game object, the engine can handle redrawing each Object
every game loop. To do this, the WorldManager is extended with a draw () method of its own
which iterates through all game objects, calling an Object’s draw() method each iteration.
Listing 4.81 illustrates the pseudo code.

Listing 4.81: WorldManager draw()

ol // Draw all Objects.

1| void WorldManager ::draw ()
2

3 for i = 0 to m_updates count
4 m_updates[i] -> draw ()
5 end for

The game loop in the GameManager needs a couple of additional lines, first to invoke
the WorldManager draw() method and then to call the DisplayManager swapBuffers()
method. Listing 4.82 shows the game loop, with line 5 calling WorldManager draw()
and line 6 calling DisplayManager swapBuffers(). Note, line 4 calls the WorldManager

-
‘Oﬁﬁ,‘
°
* 0\

4.8. Display Management 121

update () method, as described in Section 4.5.6.2 on page 103. Line 3 gets the input from
the player, which is described next in Section 4.9.

Listing 4.82: The game loop with drawing

Clock clock
while (game not over) do
clock.delta()
Get input // e.g., keyboard/mouse
WorldManager update ()
WorldManager draw ()
DisplayManager swapBuffers ()
loop_time = clock.split()
sleep (TARGET_TIME - loop_time)
end while

4.8.4 Drawing Strings

Note, for now, the DisplayManager only supports drawing a single character (like a Star “.”).
Later, the DisplayManager will be extended to support drawing sprite frames. However, at
this time, a practical exercise is to extended the DisplayManager to draw a string at a given
(x,y) location. Specifically, it will be used for ViewObjects in Section 4.16 (page 211). More
generally, a string drawing routine is useful for a game that wants to draw strings on the
screen, such as for instructions or the player’s name. Listing 4.83 shows the drawString()
method prototype. The enumerated type enum Justification allows drawing the string
to the left of the (x,y) position, centered on the (x,y) position or to the right of the (x,y)
position.

Listing 4.83: DisplayManager extensions to support drawing strings

enum Justification {
LEFT_JUSTIFIED,
CENTER_JUSTIFIED,
RIGHT_JUSTIFIED,
g

class DisplayManager : public Manager {

// Draw string at window location (z,y) with default color.

// Justified left, center or right.

// Return 0 if ok, else —1.

int drawString(Vector pos, std::string str, Justification just,
Color color) const;

g

Listing 4.84 shows the code for drawString (). The opening switch statement determines
the starting position for the string. If it is center justified, the starting position is moved
to the left by one-half the length of the string. If it is right justified, the starting position

£

\

N =

= W

4.8. Display Management 122

is moved to the left by the length of the string. If it is left justified no modifications to
the starting position are made. This is the default (and is also the behavior if any invalid
Justification value is given).

Once the starting position is determined, the for loop starting on line 21 writes out the
string a character at a time, moving the x position over by one each time.

Listing 4.84: DisplayManager drawString|()

// Draw string at window location (z,y) with color.
// Justified left, center or right.
// Return 0 if ok, else —1.
int DisplayManager ::drawString (Vector pos, std::string str,
Justification just,
Color color) const
// Get starting position .
Vector starting_pos = pos
switch (just)
case CENTER_JUSTIFIED:
starting_pos .setX (pos.getX() - str.size()/2)
break
case RIGHT_JUSTIFIED :
starting_pos .setX(pos.getX() - str.size())
break
case LEFT_JUSTIFIED:
default:
break
end switch

// Draw string character by character.

for i = 0 to str.size()
Vector temp_pos(starting_pos.getX() + i, starting_pos.getY())
drawCh (temp_pos, str[i], color)

end for

/) All is well.
return ok

4.8.5 Drawing in Layers

Up until now, there is no easy way to make sure one Object is drawn before another. For
example, if the Saucer Shoot game from Section 3.3 was made, a Star could appear on top of
the Hero. In order to provide layering control that allows the game programmer to explicitly
determine which Objects are drawn on top of which, Dragonfly has an “altitude” feature.
Objects at low altitude are drawn before Objects at higher altitude. Higher altitude Objects
drawn in the same location “overwrite” the lower ones before the screen is refreshed. For
example, in Saucer Shoot, Stars are always drawn at low altitude so that they will always
appear to be behind all other Objects (e.g., Saucers and Bullets). Note that this feature
is not a 3rd dimension — Dragonfly is still a 2d game engine — since layering is only used
for drawing and not for moving and, more importantly, not for collisions. In other words,
Objects can potentially collide with any Object, regardless of altitude.

In order to implement altitude, each game Object is given an altitude attribute and

-
‘Oﬁﬁ,‘
°
* 0\

4.8. Display Management 123

methods allow for getting and setting the altitude, all shown in Listing 4.85. The method
setAltitude () checks that the new altitude is within the supported range, 0 to the maxi-
mum supported. The maximum supported should be defined as const int MAX_ALTITUDE
in WorldManager.h and set to 4. In the Object constructor, the initial altitude should be
set to 1/2 of MAX_ALTITUDE.

Listing 4.85: Object class extensions to support altitude

0| private:
1 int m_altitude; // 0 to MAX supported (lower drawn first).
2

public:

// Set altitude of Object, with checks for range [0, MAXALTITUDE].
5\ // Return 0 if ok, else —1.

6 int setAltitude (int new_altitude) ;

8| // Return altitude of Object.
9 int getAltitude () const;

With the altitude attributes and methods in place, in the WorldManager draw () method,
an outer loop is added to go through each of the altitudes, low to high, as shown in List-
ing 4.86. If the Object’s altitude matches the loop iterator, it is drawn. Drawing from low
to high means Objects at higher altitudes are drawn “on top” of Objects at lower altitudes.

Listing 4.86: WorldManager extensions to support altitude
of // In draw() ...

for alt = 0 to MAX_ALTITUDE

3 // Normal iteration through all Objects.
|

6 if all_objects[i] -> getAltitude () is alt then

8 // Normal draw.

11 end if

13 end for // Altitude outer loop.

While the looping method in Listing 4.86 is effective and simple (good attributes for
most programs), it is not particularly efficient. Each object is drawn only once, just as it
was before altitude was added. However, as specified by the outer loop, the WorldManager
draw() method iterates through all Objects 5 times (0 to MAX_ALTITUDE). This can be
fixed by storing the Objects according to their altitudes and fetching them only once. Such
efficiency is a common feature of a scene graph and is addressed in the Dragonfly SceneGraph
in Section 4.17.1 (page 228).

4.8.6 Colored Backgrounds (optional)
The default color scheme for Dragonfly has a black background. For some games — for
example, a game of naval warfare on the high seas — a different color background, perhaps

cusi,
™ -
"\

\

4.8. Display Management 124

blue, may be more appropriate. To add support for alternate background colors, the Dis-
playManager can be extended as shown in Listing 4.87. The extension includes a private
attribute for the background is added as well as a method to set it.

Listing 4.87: DisplayManager extension to support background colors

0| private:
sf::Color m_window_background_color; // Background window color.

public:
// Set default background color. Return true if ok, else false.
6 bool setBackgroundColor (int new_color);

The setBackgroundColor () method maps the Dragonfly color, of type Color to the
SFML color, of type sf::Color. The call to clear () in swapBuffers() is modified to pass
in m_window_background_color.

Once in place, the game programmer can make a different colored background, say blue,
by adding the call:

H[DM .setBackgroundColor (df : : BLUE) ;]

after starting up the game engine.

4.8.7 Development Checkpoint #5!

Continue with your Dragonfly development by extending your Dragonfly Egg* from Sec-
tion 4.6, by adding functionality for managing graphics from Section 4.8. Steps:

1. Modify GameManager run() to provide step events as in Listing 4.68. Create a test
game object that receives these events. Verify with logfile or game object output,
counting the number of step events that should be received multiplied by the wall
clock time (e.g., running for 30 seconds should yield 900 step events).

2. Create a DisplayManager derived class, inheriting from the Manager class. Imple-
ment DisplayManager as a singleton, described in Section 4.2.1 on page 54. Add
DisplayManager.cpp to the project, and include stubs for all methods in Listing 4.75.
Make sure the class (with stubs) compiles.

3. Write startUp() and shutDown () methods for the DisplayManager, referring to List-
ing 4.76 as needed. Implement getWindow() and then swapBuffers() based on List-
ing 4.79. Outside the GameManager, test that the DisplayManager can be started
up, writing a character on the window using getWindow(), an sf::Text object and
draw(), and then shut down.

* Did you know (#6)? There are about 5000 known species of dragonflies and dam-
selflies, with an estimate of about 5500 and 6500 species in total. — “The Dragonfly Website”,
http://dragonflywebsite.com/faq.htm

s

Ye

5
s

4.8. Display Management 125

4. Implement getHorizontal () and getVertical(). Test by starting the DisplayMan-
ager, making calls to getHorizontal () and getVertical() and writing them to the
logfile. Verify the values reported correspond to the window size.

5. Implement drawCh () as in Listing 4.78. Verify that it works by replacing the draw-
ing test code in the previous steps with calls to drawCh(). Once tested, implement
drawString () which utilizes drawCh (). Test with a variety of strings and justifica-
tions.

6. Add the empty draw() method and create a game object derived from Object (e.g., a
Star) with a draw() method that calls the DisplayManager drawCh (). Implement the
draw() method in the WorldManager based on Listing 4.81. Modify the game loop
in the GameManager to call the WorldManager draw() method and the DisplayMan-
ager swapBuffers(), as in Listing 4.82. Test that the custom game object is drawn
properly as the game runs.

7. For implementing drawing in layers, add support for Object altitude, as in Listing 4.85.
Extend the WorldManager to support altitude also, referring to Listing 4.86 as needed.
Make an derived object (e.g., a Star) at a lower altitude than another derived object.
Place the objects on top of each other and verify that the background object is ob-
scured by the foreground object. Test several different layers at several different
locations, along with an object that changes its altitude as the game runs. Verify that
objects cannot set their altitude outside of the [0, MAX _ALTITUDE] range limits.

Tip 16! DisplayManager testing. In testing the DisplayManager to verify SFML
is working properly, it can be helpful to isolate DisplayManager tests outside of the
other engine components. For example, the test program in Listing 4.88 uses just
the DisplayManager without the other Dragonfly components. When Listing 4.88 is
successfully executed, it should pop up an SEFML window, draw a green ‘*’ at (10,5)
for 2 seconds, then close the window. Note, as indicated, sleep() should be used
if on Linux. Warning! This sample code will not work as intended on a Mac since
the sleep call will block and the window will not be updated.

Listing 4.88: Testing the DisplayManager

#include <unistd.h> // If wusing Linuzx.
#include " DisplayManager.h”

// Warning! This example doesn’t work on a Mac.
int main() {
DM.startUp () ;
DM.drawCh(df::Vector ({10,5}), 'x', df::GREEN);
DM. swapBuffers () ;
Sleep (2000); // Sleep for 2 seconds (use sleep (2) in Linuz).

s

* ol

8.}

5%

Ye

4.8. Display Management 126

10 DM. shutDown () ;
11| ¥

At this point, you should now be able to actually see game objects in the window! This
is an important milestone in development of an engine, and one that lets you develop and
test by verifying object interactions visually. However, output to the logfile becomes even

more important as writing debugging messages to window is more difficult.

s

cutt
"

8.}

%

4.9. Input Management 127

4.9 Input Management

In order to get input from the player, a game could poll an input device directly. For
example, for a platformer game on a PC, the code could check if the space bar was pressed
and, if so, perform a “jump” action. The advantage of such a polling method is simplicity —
the game code checks the input device right when it needs it and knows exactly what device
to check. However, there are also significant disadvantages. First off, code to poll hardware
devices is typically device dependent. If the device was swapped out, such as changing the
keyboard for a joystick, the game would not work (at least, not without changing the game
code and recompiling). Even with the same device, if the key was remapped, such as making
the ‘j’ key execute a “jump” operation instead, then, again, the game code would need to
be changed. Also, if there were supposed to be duplicate mappings for a single event, such
as the left mouse button also being a “jump”, then the code to do the polling (and maybe
the jump action) would need to be duplicated.

The primary role of the game engine is to avoid such drawbacks by generalizing input
from a variety of hardware-specific devices and code into general game code. The input
flow generally goes as follows:

1. The player provides input via a specific device (e.g., a button press).

2. The game engine detects that input has occurred. The engine determines whether to
process the input or ignore it (e.g., player input may be ignored during a cut-scene).

3. If input is to be processed, the data is decoded from the device. This may mean dealing
with device-specific details (e.g., the degrees of rotation on an analog joystick).

4. The device-specific input is encoded into a more abstract, device-independent form
suitable for the game.

After the above steps, all game objects that are interested in the input are notified —
in Dragonfly, this means passing an input event to an Object using Manager onEvent ().
The information in the input event depends upon the type. For example, a keyboard input
needs the value of the key pressed while a mouse input needs the button type (left, right or
middle) and the mouse (x,y) location.

4.9.1 Simple and Fast Multimedia Library — Input

While there are several options for getting user input, for Dragonfly, since the Simple and
Fast Multimedia Library (SFML) is already used for graphical output (see Section 4.8.1 on
page 110), it is also used for input. Specifically, SEML supports the ability to get keyboard
input without waiting/blocking. In traditional keyboard input (e.g., cin or scanf()),
a program waiting for input is blocked /suspended until the user presses the “enter” key.
With SEFML, the program can either be notified of a keypress event and /or the program can
check if a particular key is being held down. SFML also supports mouse actions, tracking
the current position of the mouse cursor and notifying when mouse buttons are pressed and
released.

s

* ol

8.}

5%

Ye

4.9. Input Management 128

In order to use SFML input suitable for games, there are only two initial actions that
need to be taken. SFML input events are provided for an SFML window, so such a window
needs to be created (in Dragonfly, the window needed is created by the DisplayManager
upon startup (see Listing 4.69 on page 110)). Also, by default, when a user holds down a key,
after a small delay, the built-in “repeat” functionality of the keyboard will generate a log
of keypress events. Since many games allow the user to hold down a key as an action (e.g.,
hold down arrow keys to move an avatar), it is useful to disable the repeat functionality,
and can be done in SFML as shown in Listing 4.89.

Listing 4.89: SFML disable keyboard repeat

ol // Disable keyboard repeat.
1| p_.window -> setKeyRepeatEnabled (false)

When disabled, a program only gets a single event when the key is pressed. To re-enable
key repeat, true is passed into to setKeyRepeatEnabled (), enabling repeated KeyPressed
events while keeping a key pressed.

Once initialized, SEFML for game-type input proceeds first by using window input events,
as shown in Listing 4.90. SFML provides event attributes through the sf::Event object,
which is populated with the pollEvent () call. Each call to pollEvent () provides exactly
one event, so to check all such events, it is placed inside a while () loop, as on line 1. The
type of each event is checked through the type field. While SFML provides many win-
dow events, only some of them are useful for input — specifically, sf: :Event: :KeyPressed,

sf::Event: :KeyReleased, sf: :Event: :MouseMoved, and sf: :Event: :MouseClicked. When

there is a MouseClicked event, the button can be checked for which mouse button is clicked,
shown for the right mouse button on line 45. For the keyboard, the key that is pressed/re-
leased is in the SFML event code, and for the mouse, the button that pressed/released is
in the SFML event button.

Listing 4.90: SFML input for games

// Loop, handling all events in window.
while (const std::optional<sf::Event> p_event = p_window -> pollEvent()) do

// Get event.

sf::Event e = p_event.value()

// Window closed?

if p_event -> is<sf::Event::Closed>() then
// Do close stuff. e.g., set game over

end if

// Key was pressed?
if p_event -> is<sf::Event::KeyPressed>() then

// Setup as KeyPressed event.
sf::Event::KeyPressed *p_kb_event =
reinterpret_cast <sf::Event::KeyPressed *> (&e)

// Get SFML keyboard code.
sf::Keyboard::Key key
key = p_kb_event -> code

s

Ye

5
s}

4.9. Input Management 129

// Do other keypress stuff.
end if

// Key was released?
(similar to key pressed)

// Mouse moved?

if p_event -> is<sf::Event::MouseMoved>() then
// Setup as MouseMoved event.
sf::Event::MouseMoved *p_mse_event =

reinterpret_cast <sf::Event::MouseMoved *> (&e)

// Get pizel location .
sf::Vector2i pixel_pos = p_mse_event -> position

// Do other mouse moved stuff.
fi
// Mouse clicked?
(similar to mouse moved, but also check buttons ...)

if p_mse_event -> button == sf::Mouse::Button::Right then
// Do mouse button stuff

end while

4.9.1.1 SFML — Polled Input (optional)

While the code in Listing 4.90 provides all window based events, trying to move an avatar
by pressing and holding a key using sf: :Event: :KeyPressed will not work since only one
such event is provided — when the key is first pressed. Instead, SFML provides methods to
directly check if a key or mouse button is currently pressed by polling it. This is illustrated
in Listing 4.91. Note, this code is outside of the while () loop in Listing 4.90. Here, a specific
key can be polled (e.g., sf: :Keyboard: :Key: :Left) to see if it is currently being held down.
Similarly, a specific mouse button can be polled (e.g., sf::Mouse: :Button:Left) to see if
it is currently being held down

Listing 4.91: SFML input — polling key/mouse pressed

// Key is pressed.
if sf::Keyboard::isKeyPressed (keycode) then
// Do key is pressed stuff.

end if

// Mouse button is pressed.

if sf::Mouse::isButtonPressed (button) then
// Do mouse is pressed stuff.

end if

4.9. Input Management 130

4.9.2 The InputManager

The InputManager is a singleton derived from the Manager class, with private constructors
and a getInstance() method to return the one and only instance (see Section 4.2.1 on
page 54). The header file, including class definition, is provided in Listing 4.92.

The InputManager constructor should set the type of the Manager to “InputManager”
(i.e., setType ("InputManager") and initialize all attributes.

The startUp() method gets the display ready for input using SFML, as per Sec-
tion 4.9.1. Similarly, the shutDown () method reverts to normal use. Finally, the method
getInput () uses SFML to obtain keyboard and mouse input and is called by the Game-
Manager once per game loop.

Listing 4.92: InputManager.h

#include " Manager.h"

class InputManager : public Manager {
private:
InputManager () ; // Private (a singleton).
InputManager (InputManager const&); // Don’t allow copy.
void operator=(InputManager const&); // Don’t allow assignment
public:

// Get the ome and only instance of the InputManager .
static InputManager &getInstance ();

// Get window ready to capture input.
// Return 0 if ok, else return —1.
int startUpQ);

// Revert back to mormal window mode.
void shutDown () ;

// Get input from the keyboard and mouse.
// Pass event along to all Objects.
void getInput () const;

23| 3

For starting up, an SFML window needs to be created first. However, the InputManager
does not do this — rather, the InputManager assumes this was done already by the Display-
Manager. Thus, there is now a starting order dependency for the Dragonfly managers in
that the DisplayManager must be started before the InputManager. The InputManager
checks that the DisplayManager has successfully been started via a check to isStarted()
— if it has not, then the InputManager does not start up successfully, either.

In general, the startup order for the Managers defined thus far should be:

1. LogManager
2. DisplayManager

3. InputManager

s

Ye

5
s}

4.9. Input Management 131

Remember, as described in Section 4.4.4, the game programmer instantiates (via get-
Instance()) and starts up (via startUp()) the GameManager, and the GameManager in
its startUp() instantiates and starts up the other managers in the proper order. Only if
they all start up successfully should the game manager report a successful startup.

In more detail, the InputManager startUp() method does the steps shown in List-
ing 4.93. First, the DisplayManager is checked to see if it has been started. If so, the SFML
window (of type sf::RenderWindow is obtained from it. The window is used to disable
key repeat. If everything succeeds, Manager: :startUp() is called to indicate successful
startup.

Listing 4.93: InputManager startUp()

// Get window ready to capture input.
// Return 0 if ok, else return —1.
int InputManager ::startUp ()

if DisplayManager is not started then
return error
end if
sf::RenderWindow window = DisplayManager getWindow ()

disable key repeat in window

call Manager::startUp ()

The InputManager shutDown() method re-enables key repeat and invokes Manager
shutDown () to indicate the InputManager is no longer started.

Steps in the InputManager’s getInput () method are provided in Listing 4.94 and are
similar to those in Listing 4.90 (on page 128).

In the while loop, SFML window events are checked. If there are respective keyboard
and /or mouse actions, a corresponding Dragonfly keyboard or mouse event is generated. To
“send” the event to Objects, the onEvent () method is used. See Listing 4.67 on page 109
for a refresher on what it does. The keyboard and mouse events themselves are described
in upcoming Section 4.9.2.1 and Section 4.9.2.2, respectively.

Listing 4.94: InputManager getInput()

// Get input from the keyboard and mouse.
// Pass event along to all Objects.
void InputManager ::getInput () const

// Check past window events.
while event do

if key press then

create EventKeyboard (key and action)
send EventKeyboard to all Objects

else if key release then

create EventKeyboard (key and action)

s

Ye

5
s}

W =

4.9. Input Management 132

send EventKeyboard to all Objects
else if mouse moved then

create EventMouse (x, y and action)
send EventMouse to all Objects

else if mouse clicked then

create EventMouse (x, y and action)
send EventMouse to all Objects

end if

end while // Window events.

To use the InputManager, the GameManager adds a call to getInput() in the game
loop (inside GameManager run()):

// (Inside GameManager run())
// Get input.
InputManager getInput ()

4.9.2.1 Keyboard Event

Listing 4.95 provides the header file for the EventKeyboard class.

The top part of the header file defines two enum types.

The first, enum EventKeyboardAction, specifies the types of keyboard actions Dragon-
fly recognizes, namely: KEY_PRESSED, and KEY_RELEASED. The UNDEFINED KEYBOARD _ACTION
action is used for the default.

The second, Keyboard: :Key, specifies the keys Dragonfly recognizes. It is placed inside
its own namespace, Keyboard, for clarity. All major keys are recognized, with UNDEFINED -
KEY used for the default. Note, the key types here are all Dragonfly attributes and not
SFML (i.e., not sf::Keyboard: :Key) in order to encapsulate the SFML code inside the
engine. This way, game code that examines what keys are pressed is not dependent (nor
even aware) of the underlying SFML. This would allow, say, a change in the input layer,
say by replacing SFML with something else, without changing the game code.!®

For the class body, as for all Dragonfly events, EventKeyboard is derived from the
Event base class. It stores the keystroke in key_val and the keyboard action in keyboard -
action. Each attribute has a pair of methods to get and set it. For example, the method
setKey () takes on the value of the key based on what is pressed (typically only done by
the InputManager), and the method getKey () is used by game code for retrieving the key
value. The constructor sets event_type to KEYBOARD_EVENT, defined in the top of the header
file.

5n fact, an earlier version of Dragonfly used Curses, a set of library functions that enable controlling
text output in terminal windows.

s

Ye

5
s}

16

4.9. Input Management

Listing 4.95: EventKeyboard.h

133

#include " Event.h”

const std::string KEYBOARD_EVENT

"df:: keyboard”;

// Types of keyboard actions Dragonfly recognizes.

enum EventKeyboardAction {

UNDEFINED_KEYBOARD_ACTION =

KEY_PRESSED,
KEY_RELEASED ,

-1, // Undefined .
// Was down.
// Was released .

g

// Keys Dragonfly recognizes.
namespace Keyboard {
enum Key {

UNDEFINED_KEY = -1,

SPACE, RETURN, ESCAPE, TAB, LEFTARROW, RIGHTARROW, UPARROW, DOWNARROW,
PAUSE, MINUS, PLUS, TILDE, PERIOD, COMMA, SLASH, LEFTCONTROL,
RIGHTCONTROL , LEFTSHIFT, RIGHTSHIFT, F1, F2, F3, F4, F5, F6, F7, F8,
F9, Fi0, F11, Fi12, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,
R, s, T, U, v, w, X, Y, Z, NUM1, NUM2, NUM3, NUM4, NUM5, NUM6, NUM7,
NUM8 , NUM9, NUMO,

i
Y // end of namespace Keyboard

class EventKeyboard public Event {
private:
Keyboard::Key m_key_val;
EventKeyboardAction m_keyboard_action;

// Key value.
// Key action .

public:
EventKeyboard () ;

// Set key in event.
void setKey(Keyboard::Key new_key);

// Get key from event.

Keyboard::Key getKey() const;

// Set keyboard event action.
void setKeyboardAction (EventKeyboardAction new_action);

// Get keyboard event action.
EventKeyboardAction getKeyboardAction () const;
};

4.9.2.2 Mouse Event

Listing 4.96 provides the header file for the EventMouse class, also derived from the Event
base class. Dragonfly only recognizes a fixed set of mouse actions and buttons, defined by
MouseAction defined by MouseButton, respectively. Mouse actions recognized are CLICKED
and MOVED, with UNDEFINED_MOUSE_ACTION being the default. Mouse buttons recognized are

-

® 0%
e
o\"e

*\

4.9. Input Management

134

LEFT, RIGHT, MIDDLE, with UNDEFINED_MOUSE_BUTTON being the default. As for EventKey-
board, the mouse buttons are Dragonfly attributes to encapsulate the SFML code inside

the engine.

The mouse action is stored in the attribute mouse_action, the mouse button in mouse_-

button, and the (x,y) location in mouse_xy.

Methods are provided to get and set each attribute. The “set” methods are typically only
used by the InputManager, while the “get” methods are used in the game code to retrieve
values and act appropriately for the game. The EventMouse constructor sets event_type

to MSE_EVENT.16

Listing 4.96: EventMouse.h

#include " Event.h”
const std::string MSE_EVENT = "df::mouse”;

// Set of mouse actions recognized by Dragonfly.
enum EventMouseAction {

UNDEFINED_MOUSE_ACTION = -1,

CLICKED,

MOVED ,

};

// Set of mouse buttons recognized by Dragonfly.
namespace Mouse {
enum Button {

UNDEFINED_MOUSE_BUTTON = -1,
LEFT,
RIGHT,
MIDDLE,
s
Y // end of mamespace Mouse
class EventMouse : public Event {
private:
EventMouseAction m_mouse_action; // Mouse action.
Mouse::Button m_mouse_button; // Mouse button .
Vector m_mouse_xy; // Mouse (z,y) coordinates .
public:

EventMouse () ;

// Load mouse event’s action .
void setMouseAction (EventMouseAction new_mouse_action) ;

// Get mouse event’s action.
EventMouseAction getMouseAction () const;

// Set mouse event’s button .
void setMouseButton (Mouse::Button new_mouse_button) ;

16MSE_EVENT is used instead of MOUSE_EVENT since the latter can conflict with a macro if developing in

Windows.

10
11
42
13
14
45

16

48

4.9. Input Management 135

g

// Get mouse event’s button .
Mouse::Button getMouseButton () const;

// Set mouse event’s position .
void setMousePosition (Vector new_mouse_xy);

// Get mouse event’s position .
Vector getMousePosition () const;

At this point, a view of complete version of the game loop is warranted, shown in

Listing 4.97. Unlike in early versions of the game loop shown, code can be constructed for
each game loop element based, as indicated in the comments.

Listing 4.97: The complete game loop

Clock clock // Section 4.4.3 on page 68.

while (game not over) do // Line 11 of Listing 4.25 on page 72.
clock.delta() // Line 14 of Listing 4.20 on page 68.
GameManager onEvent (EventStep) // Listing 4.67 on page 109.
InputManager getInput () // Listing 4.94 on page 131.
WorldManager update () // Listing 4.64 on page 103.
WorldManager draw () // Listing 4.81 on page 120.
DisplayManager swapBuffers () // Listing 4.79 on page 119.
loop_time = clock.split() // Line 19 of Listing 4.20 on page 68.

sleep (TARGET_TIME - loop_time) // Listings 4.21 and 4.22 on page 69+.

end while

4.9.3 Development Checkpoint #6!

Continue with Dragonfly development by adding functionality for managing input from
Section 4.9. Steps:

1. Create an InputManager derived class, inheriting from the Manager class. Imple-

ment InputManager as a singleton, described in Section 4.2.1 on page 54. Add
InputManager.cpp to the project and include stubs for all methods in Listing 4.92.
Make sure the class, with stubs, compiles.

. Write startUp() and shutDown() methods for the InputManager, referring to List-

ing 4.93 as needed. Write a small test program (with only an InputManager and
DisplayManager) that verifies the InputManager can only start successfully when the
DisplayManager is started first.

. Create EventKeyboard and EventMouse classes, referring to Sections 4.9.2.1 and

4.9.2.2, as needed. Add EventKeyboard.cpp and EventMouse.cpp to the project
and stub out each method so it compiles. Verify both classes can get and set all
values in a stand alone program (running outside of the other engine components).

. Implement InputManager getInput (), referring to Listing 4.94 for the structure and

Listing 4.90 for the SFML code, as appropriate. First, get getInput () implemented

-
» 0%
N,
.

"\
\

4.9. Input Management 136

and tested with one key (e.g., the letter ‘A’) and then one mouse button. Once that
is working properly, continue implementation for all keys and all mouse buttons.

5. Test the InputManager getInput() outside of a running game loop creating a pro-
gram that starts the DisplayManager and the InputManager, then repeatedly calls
getInput (), writing the return values to the logfile. This can be tested extensively
with different mouse and keyboard inputs.

6. Integrate the InputManager with the GameManager by having the GameManager
start up the InputManager in the proper order. Write a game object that takes input
from the keyboard, responds to input by changing position and have that change in
position be visible on the screen.

Tip 17! Reticle for testing mouse input. The Reticle from the Saucer Shoot
tutorial (Chapter 3) is a good game object to use as a start for testing mouse input.
You can copy the Reticle.cpp and Reticle.h code from that project and test your
newly-implemented Input Manager once integrated with the engine. (Note, you’ll
need to remove the registerInterest() call from the Reticle constructor unless
and until you implement filtering of events, Section 4.15 on page 201.) The “game”
can just be anew Reticle and the player should be see a + character moving around
the screen with the mouse. Add handling of mouse button presses in the Reticle
eventHandler (), writing a message to the LogManager or changing the Reticle
color.

At this point, the engine should now be able to get input from a player and have game
objects respond to the input! This means, coupled with the DisplayManager, the engine
supports game objects a player can move (e.g., via the arrow keys or the mouse) around
the screen. This closes the interaction loop, taking user input, updating the game world,
and displaying the resulting output — basic interaction!

‘v*:’{._

4.10. Kinematics 137

4.10 Kinematics

Kinematics is the physics that describes the motion of objects without taking into account
forces or masses. In relation to our engine, up until now, moving an object has to be done
in game code with the game programmer writing code to move an game object each step
event. For example, if a Saucer needs to move, say 1 space to the left every 4 steps (0.25
spaces per step), when the Saucer receives the step event in the eventHandler (), it moves,
as in Listing 4.98.

Listing 4.98: Saucer movement without velocity support

// Move 0.25 spaces per step.
int Saucer::eventHandler (const df::Event *p_e) override {
if (p_e->getType() == df::STEP_EVENT) {
df ::Vector pos = getPosition();
pos.setX(pos.getX() - 0.25);
setPosition (pos) ;
return 1; // Event handled.
}
return 0; // Event not handled.
}

While this can work, all of it can be tedious for a game programmer and prone to errors.
Fortunately, a significant service provided by most game engines, including Dragonfly, is
moving game objects automatically, in the right direction at the right speed. This allows a
game programmer to provide a game object with a velocity and have the object move an
appropriate amount in an appropriate direction each game step.

To support this, Object is extended with additional attributes for velocity, shown in
Listing 4.99 — namely m_direction as a vector and m_speed as a float, initialized to (0,0)
and 0, respectively, in the Object constructor. They can be set by normal getters and
setters.

Listing 4.99: Object extensions to support kinematics

private:

Vector m_direction; // Direction vector.

float m_speed; // Object speed in direction.
public:

// Set speed of Object.
void setSpeed(float speed);

// Get speed of Object.
float getSpeed () const;

// Set direction of Object.

void setDirection (Vector new_direction);

// Get direction of Object.

Vector getDirection () const;

// Set direction and speed of Object.
void setVelocity (Vector new_velocity);

2

4.10. Kinematics 138

// Get wvelocity of Object based on direction and speed.
Vector getVelocity () const;

// Predict Object position based on speed and direction .
// Return predicted position .
Vector predictPosition ()

In addition, getting and setting the Object velocity is done via getVelocity() and
setVelocity (), respectively, which use Vector operations scale() and normalize() (see
Listing 4.28 on page 76 and Listing 4.29 on page 77), as appropriate. Specifically: a) speed
is just the magnitude of the velocity, a float, b) direction is the normalized velocity, a vector,
and c) velocity is the direction scaled by the speed. So, with the developed Vector methods:

speed = velocity.getMagnitude ()
direction = velocity.normalize ()
velocity = direction.scale(speed)

The real magic happens in an Object support method — one that computes where an
Object will be after a game loop’s worth of velocity is added, but without actually moving it.
This method, called predictPosition(), is shown in Listing 4.100. Basically, it indicates
where an Object will be after it moves given the speed and direction attributes (i.e., the
velocity)*.

Listing 4.100: Object predictPosition|()

// Predict Object position based on speed and direction.
// Return predicted position .
Vector Object::predictPosition ()

// Add wvelocity to position .
Vector new_pos = m_position + getVelocity ()

// Return new position .
return new_pos

Once support for velocities is in the Object class, the WorldManager needs to be updated
to use it. This is done by adding functionality to the update () method (see Section 4.5.6.2
on page 103). Listing 4.101 shows the necessary pseudo code.

Listing 4.101: WorldManager extensions to update() to support kinematics

// Update Object positions based on their velocities.

// Iterate through all Objects.
for i = 0 to m_updates count

// Add wvelocity to position .
Vector new_pos = m_updates[i] -> predictPosition ()

// If Object should change position , then move.

* Did you know (#7)7 Much like humans, dragonflies use predictive models to intercept prey. — David
Shultz. “Watch: A Dragonfly Predicts the Movements of Its Prey”, Science Magazine, December 10, 2014.

-

» 0%
",

"\
\

10
11

13
14

o= O

= W

wt

4.10. Kinematics 139

if new_pos != getPosition () then
moveObject () to new_pos
end if

end for // End iterate.

Basically, update () iterates through all Objects. For each, it calls predictPosition()
to check if the Object should move or not. If so, it moves the object by calling moveObject ().
The functionality inside moveObject () is discussed in the next section, Section 4.10.1.

Using velocity support in Dragonfly for the game programmer is easy. Instead of a
game object having to move itself by handling every step event in the eventHandler () and
determining when and where to move, the game programmer can just set the speed and
direction for game objects (derived from the Object class, of course). For example, for a
Saucer traveling right to left across the screen, the programmer sets the speed and direction
(or setting the velocity) of the Object, as in Listing 4.102. There is no longer a need for a
game object to handle the step event for moving.

Listing 4.102: Saucer movement with velocity support

// Set movement left 1 space left every 4 frames.
setSpeed (0.25) ;
setDirection (df ::Vector(-1.0, 0));

// Note: the above two lines are equivalent to:
setVelocity (df::Vector (-0.25, 0));

Newtonian Mechanics Physics (optional) Velocity support is complete, but could
be enhanced. Possible options could extend the velocity support to include a acceleration
component (another Vector) for each game object. With acceleration, a game object’s
velocity would change slightly (it would accelerate or decelerate according to the direction)
each step. This could be especially useful for providing, say, gravity pulling an avatar down
(a fixed acceleration in the vertical direction) for a platformer game.

While the kinematics in Dragonfly provides support for a lot of games, additional clas-
sical Newtonian physics mechanics include forces and masses. In fact, while acceleration
can simply be added to objects as mentioned in the previous paragraph, in the real world
it is achieved through application of a force on an object through the equation:

F=m-a

where F' is the applied force, m is the object mass and « is the acceleration. Adding a mass
attribute to game objects would be a first step to using forces as a precursor so acceleration
and velocity.

And that is really just the tip of the iceberg. More advanced physics techniques that
could be incorporated into Dragonfly include elastic and non-elastic collisions, rigid body,
soft body and ragdoll simulation, joints as constraints, and more. The aspiring programmer
is encouraged to check out one of the many books on physics for game engines, such as the
Game Physics Engine Development by Ian Millington [6].

s

Ye

5
s

4.10. Kinematics 140

4.10.1 Collisions

A closely related service to moving a game object is detecting when two or more game
objects collide and, when they do, triggering object responses as appropriate. However,
determining when objects collide is not as easy as it may seem:

e Geometries of objects can be complex — square or circular objects are efficient in
terms of computing area (or volume, if 3d) and locations in the game world, but more
complex objects, for example humanoids and trees, take many more computations to
compute exact locations in the game world.

e Objects can be moving fast — objects that move great distances mean there is a larger
area (or volume, if 3d) from the old position to the new position that may result in
potential collisions.

e There can be many objects — the more objects there are, the more opportunities there
are for collisions and the more computations the game engine needs to do each step to
determine if objects collide. A naive solution could take O(n?), meaning every object
(all n of them) is checked for a collision with every other object, so n x n comparisons
are made each step.

There are many possibilities when it comes how to implement to collision detection.
Dragonfly uses what is perhaps the most commonly used technique for games — overlap
testing. Overlap testing is relatively easy, both conceptually (for the game programmer as
well as the game engine programmer) and in terms of implementation. However, it may
exhibit more errors than some other forms of collision. Basically, with overlap testing, when
an game object moves, the engine checks whether or not its area (or volume, if 3d) overlaps
that of any other object. If so, there has been a collision. If not, then the object can move
unimpeded. When a collision has occurred, both game objects get notified of the event.

Despite the advantages (simplicity and speed of execution), overlap testing can fail when
game objects move too fast relative to their size. Consider the game example below where
an arrow is fired at a window. The arrow has a velocity of 15, meaning it moves 15 spaces
horizontally each step.

At time t1, the arrow (>---), moving left to right, approaches the window (|). One
step later, at time 2, the arrow’s velocity moves it 15 spaces to the right and a collision
seems imminent. However, there is not yet an overlap between the arrow and the glass, so
no collision is detected. At time ¢3, the arrow’s velocity carries it another 15 spaces to the
right, past the window and as there is still no overlap, no collision is detected. Effectively,
the arrow appears to have gone right through the glass window with breaking it (or even
hitting it)!

There are several possible solutions to this problem. A game programmer, knowing that
the engine is using overlap testing, can put a constraint on game object sizes and speeds

“olle,

\

4.10. Kinematics 141

such that the fastest object moves slow enough (per step) to overlap with the thinnest
object. For the example above, the window would need to be 13 spaces thick, the arrow
would need to be 13 spaces long, or the arrow would need to only move 3 spaces per step,
or some combination of the above. While this would ensure the arrow would always hit the
window, it might not be practical for all games (e.g., the arrow speed might be too slow for
other uses and/or the window too thick for the environment).

Another solution is to reduce the step size. The step size dictates how often the game
world is updated. Game programmers want aspects such as the speed of an object to be
relative to real time in terms of how fast the player sees the arrow move across the window,
and not relative to the game step. This means, for example, that a velocity of 1 with a step
frequency of 30 f/s moves 30 spaces per second. If the frequency was doubled, to 60 f/s,
then the game programmer would want to adjust the velocity to be 0.5 so the player still
sees the object move 30 spaces per second. What this will do, however, is make the object
move fewer spaces each step, making it less likely for overlap testing to fail. However, this
comes at a cost — namely, increased computation as the game loop runs more often (in this
example, twice as often), possibly leading to the engine not being able to keep up with the
update rate. *

A more complex solution (incidentally, not supported by Dragonfly) is to have a different
step size for different objects. Thus, fast objects and/or small objects would be updated
more frequently than slow objects. This adds complexity and computation overhead in the
update step, as well, but could be applied selectively.

The overlap test itself is fairly easy to compute with simple volumes, like circles (or
spheres, if 3d). More complex volumes can require more computation. For example, a
humanoid-shaped object and a tree-shaped object may be made up of hundreds or even
thousands of smaller polygons. If every polygon in an object needs to be tested for overlap
with the polygons of every other object to determine if the objects collide, this scales O(n?)
for n polygons per object.

To overcome this, complex geometries are often simplified in order to reduce the num-
ber of comparisons needed. Rather than doing this simplification in the model itself (which
can compromise how it looks), each object can instead be given a bounding volume that
approximates the object. For example, the humanoid-shaped object or a tree can be ap-
proximated by an ellipsoid. For a depiction of this last case, consider the brown, ASCII tree
in Figure 4.3. Computing whether a single character collides with this tree would involve
checking all the nooks and crannies of the branches — effectively examining every character
in the tree for a collision as if each character was a separate object. Instead, the entire tree
can be bound by a simpler shape for computing collisions — in this case, an ellipse, shown
by the dashed oval surrounding the tree. Determining if another object collides with this
tree is now much simpler, merely computing if it intersects the ellipse. It might be noted
that the oval itself does not fully encompass the tree — some of the branches are poking out.
This would mean that an object could hit those external branches and not collide with the
tree. For many games, this might be just fine and could be preferred over drawing a bigger
ellipse.

* Did you know (#8)7 Adult dragonflies have 6 legs but cannot walk. — “30,000 Facets Give Dragonflies
a Different Perspective: The Big Compound Eye in the Sky”, ScienceBlogs, July 8, 2009.

s

* ol

8.}

5%

Ye

4.10. Kinematics 142

- T

/, \\
V\VV WY
RA WY, AWA
\

——

Figure 4.3: Object with bounding ellipse

Commonly used bounding volumes are circles (or spheres, if 3d) where an overlap test
compares the distances between the centers with the sum of the radii. Another common
bounding volume is a rectangular box, or a bounding boz.'” In Dragonfly, each Object has
a bounding box encompassing the game object, representing the Object with a simplified
geometry.

In Dragonfly, if the edges of any two boxes overlap, there is a collision. A optional
refinement could be to provide an game programmer option for precise collision testing. In
this case, the bounding boxes would be tested for overlap normally. If there was an overlap,
then a more refined test could be done to see if the individual characters in the object sprite
overlapped, indicating a collision. Depicting this, consider the two objects in Figure 4.4 on
the left. The Saucer and the Hero ship are clearly not touching — boxes around each do not
intersect. However, a short time later, the game world state may be as on the right. Here,
the boxes do overlap. Under normal Dragonfly operation, this overlap itself would indicate
a collision. However, looking more closely, the characters themselves do not overlap. So,
an alternative option could be that if the boxes overlap, then more precise consideration of
each character is done to see if there is, in fact, a collision.

Once a collision is detected, action is taken to resolve the collision. What the actions
are, exactly, often depends upon what the game objects are. For example, if two billiard
balls collide, then computation as to where, exactly they hit is done first, followed by
computation of new velocities for both balls, accompanied by playing a “clinking” sound.
As another example, if a rocket slams into a rock wall, the rocket is destroyed, the wall takes
on a charred texture and an explosion animation object is created. As a third example, a
character walks through an invisible wall, a magic, propagating ripple effect is triggered,
but no velocities or other impacts are recorded.

In Dragonfly, the engine detects collisions through overlap testing of bounding boxes,

"Bounding boxes are also known as hitbozes since they are used to determine if an object is “hit”.

-

“fi:",
.
* 0\

B W N =

4.10. Kinematics 143

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.4: Refined collision detection with boxes

then provides a collision event to both Objects involved in the collision. Resolution involves
sending the collision event to both Objects. The Objects themselves receive the event in
their eventHandler () methods and can react appropriately.

4.10.1.1 Collidable Entities

However, not all Objects are collidable entities. Consider display elements on the screen,
such as player score or indication of time left. In most cases, these objects do not collide
with, say, the player avatar. Similarly, background objects that provide scenery, such as the
Stars in Saucer Shoot (Section 3.3), do not collide with other game elements. To support
this, Dragonfly has a notion of “solidness”, with three states defined via an enum, as in
Listing 4.103. This enum is defined in Object.h.

Listing 4.103: Solidness states

enum Solidness {

HARD , // Object causes collisions and impedes.

SOFT, // Object causes collisions , but doesn’t impede.
SPECTRAL, // Object doesn’t cause collisions.

};

Collisions only happen between solid Objects — Objects that are SPECTRAL cannot collide.
So, for example, Saucer Shoot’s Stars are SPECTRAL and not solid. Solid Objects are either
HARD or SOFT. A HARD object cannot occupy the same space as another other HARD Object,
but any number of SOFT Objects can occupy a space, with our without at most one HARD
Object.

In addition to notifying colliding solid (HARD or SOFT) Objects of the event, resolution
then disallows two HARD objects to occupy the same space. Basically, if a first solid Object
moves onto (collides with) a second HARD Object, the first object is moved back to its original
location — the collision still happens, but the movement does not take place.

The Object class extensions needed to support solidness are shown in Listing 4.104.
The attribute solidness determines if the Object is treated as solid (HARD or SOFT) or non-
solid (SPECTRAL). By default, Objects should be HARD (set in the Object constructor). The
method isS0lid () provides a convenient boolean test for whether or not the Object is solid.
Methods to get and set the solidness are provided in getSolidness () and setSolidness(),
respectively. For setSolidness(), if the new value passed in is one of HARD, SOFT or

-
“fi:",
°
* 0\

16

4.10. Kinematics 144

SPECTRAL then 0 is returned and the solidness is changed, otherwise -1 is returned and the
solidness is unchanged.

Listing 4.104: Object class extensions to support solidness

private:
Solidness m_solidness; // Solidness of object.

public:
bool isSolid () comnst; // True if HARD or SOFT, else false.

// Set object solidness, with checks for consistency .
// Return 0 if ok, else —1.

int setSolidness (Solidness new_solid);

// Return object solidness.
Solidness getSolidness () const;

4.10.1.2 Collision Event

When Dragonfly detects a collision, it sends a collision event to each Object involved.
Listing 4.105 provides the header file for the EventCollision class, derived from the Event
class (Listing 4.51 on page 95). Like other event classes, the EventCollision is a “container”
and does not have any significant functionality itself. The attributes store information
about the collision: m_pos stores the position where the collision occurred; m_p_obj1l is a
pointer to the Object moving, the one causing collision; and m_p_obj2 is a pointer to the
Object being collided with. Methods are provided to get and set each of the attributes.

Listing 4.105: EventCollision.h

#include " Event.h”
#include " Object.h”

const std::string COLLISION_EVENT = "df:: collision”;
class EventCollision : public Event {

private:

Vector m_pos; // Where collision occurred.

Object *m_p_objl; // Object moving, causing collision.
Object *m_p_obj2; // Object being collided with.

public:
// Create collision event at (0,0) with ol and 02 NULL.
EventCollision () ;

// Create collision event between ol and 02 al position p.
// Object ol ‘caused’ collision by moving into object 02.
EventCollision (Object *p_ol, Object *p_o2, Vector p);

// Set object that caused collision .
void setObjectl (Object *p_new_ol);

// Return object that caused collision .

4.10. Kinematics 145

24 Object *getObjectl () const;

26| // Set object that was collided with.
27 void setObject2(0Object *p_new_o02);

201 // Return object that was collided with.
30 Object *getObject2() const;

321 // Set position of collision .
void setPosition (Vector new_pos);

351 // Return position of collision.
36 Vector getPosition () const;

371 };

4.10.1.3 Collisions in the WorldMananger

Dragonfly handles collisions inside the WorldManager. In order to do this, the WorldMan-
ager needs to be extended with several methods.

The first method is getCollisions () which tests whether or not an Object moving to
a given location has a collision there. If so, all Objects at that location are returned in an
ObjectList (there can be more than one Object at a location since multiple SOFT Objects
can occupy the same location, with up to one HARD Object).

The second method is moveObject () that moves an Object to another location, as long
as there is not a collision between two HARD Objects at this location.

Listing 4.106: WorldManager extensions for collision support

o| public:

1 // Return list of Objects collided with at position ‘where .
ol // Collisions only with solid Objects.

3 // Does not consider if p-o is solid or not.

1 ObjectList getCollisions (const Object *p_o, Vector where);

6 // Move Object.

71 // If collision with solid, send collision events.

8 // If no collision with solid, move ok else don’t move Object.
of // If Object is Spectral, move ok.

10 // Return 0 if move ok, else —1 if collision with solid.

11 int moveObject (Object *p_o, Vector where);

An additional utility function (in utility.h and utility.cpp) called positions-
Intersect () is helpful for the WorldManager getCollisions () method, as shown in List-
ing 4.107. Basically, if two Positions are the same (their x coordinates are within 1 space of
each other and their y coordinates are within 1 space of each other) then the method returns
true, otherwise it returns false. This method may seem somewhat trivial, but it serves as
a placeholder for a method introduced in Section 4.151 on page 180, boxIntersectsBox (),
that will test whether or not two bounding boxes overlap.

Listing 4.107: Utility positionsIntersect|()
()(// Return true if two positions intersect , else false. 1

4.10. Kinematics 146

1| bool positionsIntersect (Vector pl, Vector p2)
2 if abs(pl.getX() - p2.getX()) <= 1 and

3 abs (pl.getY() - p2.getY()) <= 1 then

4 return true

5 else

6 return false

7 end if

The WorldManager getCollisions() method is provided in Listing 4.108. Since the
method returns a list of all Objects that are collided with, line 6 creates an empty list
(collision_list) to start. The next block of code iterates through all the Objects in the
game. Each Object is first checked if it is the same Object passed into getCollisions() —
if it is, it is ignored since an Object cannot collide with itself. If it is not, then the Object is
checked to see if it is at the same location, and that it is solid. If both of these are true, the
Object is added to the collision_list. When the loop is finished, the list of all Objects
collided with are returned in collision_list. Note, if no Objects have been collided with,
collision 1ist is an empty list.

Listing 4.108: WorldManager getCollisions()
// Return list of Objects collided with at position ‘where’
// Collisions only with solid Objects.
// Does not consider if p-o is solid or not
ObjectList getCollisions (const Object *p_o, Vector where)

AW N e

5| // Make empty list.
6 ObjectList collision_list

s // Iterate through all Objects.

10 for i = 0 to m_updates count

12 Object *p_temp_o = m_updates[i]

14 if p_temp_o is not p_o then // Do not consider self.

16 // Same location and both solid?

17 if positionsIntersect (p_temp_o->getPosition (), where)
18 and p_temp_o -> isSolid () then

;j add p_temp_o to collision_list
22 end if // No solid collision.

24 end if // Not self.

26 end for // End iterate.

28 return collision_1list

The getCollisions() method is used in the moveObject () method, shown in List-
ing 4.109. The moveObject () method first checks if the calling Object (the one that wants
to be moved) is solid (calling isSolid()) — if not, there are no further checks needed and
the Object can move. If the Object is solid, getCollisions() is called to produce a list

» 0%
N,
»
.\
\

10
11
12
13
14
15

16

[-
S © W

NN N NN
TR WO =

4.10. Kinematics 147

of solid Objects collided with. That collision list is iterated through,'® and each Object is
sent a collision event starting at line 23. If both Objects are HARD (line 31), then the move
will not be allowed by setting do_move to false in line 32. If a move is allowed (no HARD
collisions), then the actual move happens at the end of the method, on line 47.

Listing 4.109: WorldManager moveObject|()

// Move Object.

// If collision with solid, send collision events.

// If no collision with solid, move ok.

// If all collided objects soft, move ok.

// If Object is spectral , move ok.

// If move ok, move.

// Return 0 if moved, else —1 if collision with solid.
int WorldManager ::moveObject (Object *p_o, Vector where)

if p_o -> isSolid () then // Need to be solid for collisions.

// Get collisions .
ObjectList list = getCollisions (p_o, where)

if not list.isEmpty () then
boolean do_move = true // Assume can move.

// Iterate over list.
for i = 0 to list count

Object *p_temp_o = list[i]

// Create collision event.
EventCollision c(p_o, p_temp_o, where)

// Send to both objects.
p_o -> eventHandler (&c)
p_temp_o -> eventHandler (&c)

// If both HARD, then cannot move.
if p_o is HARD and p_temp_o is HARD then
do_move = false // Can’t move.
end if
end for // End iterate.
if do_move is false then
return -1 // Move not allowed.
end if

end if // No collision.

end if // Object not solid.

¥Note, if the collision list is empty, the iteration loop immediately ends since there is nothing to collide
with.

-

» 0%
e,
.

*\

4.10. Kinematics 148

46 // If here, no collision between two HARD objects so allow move.
17 p_o -> setPosition (where)

49 J/ All is well.
50 return ok // Move was ok.

Disallow Movement onto Soft Objects (optional) The construct of soft Objects
allows many solid objects to reside in one location (if they are SOFT). This allows a solid
Object to move onto a group of soft objects, generating collisions for each one in the process.

However, a game programmer may not want to allow some Objects to move onto the
soft Objects. Dragonfly can be extended to support this functionality, first by adding an
additional attribute to the Object class, shown in Listing 4.110, along with basic functions
to get and set the attribute. If the attribute m_no_soft is true (it should default to false),
the Object is not allowed to move onto soft game objects (but will still generate collisions
— effectively, soft game objects are treated as hard game objects in this case).

Listing 4.110: Object class extensions to support no soft

ol private:
bool m_no_soft; // True if won’t move onto soft objects.

// Set ‘mno soft’ setting (true — cannot move onto SOFT Objects).

3| public:
4
5 void setNoSoft (bool new_no_soft=true);

~

// Get ‘no soft’ setting (true — cannot move onto SOFT Objects).
bool getNoSoft () const;

0

Then, the WorldManager moveObject () method is refactored. In Listing 32 on page 147,
similar to the block of code around line 32 that indicates the Object should not move if
both Objects are solid, an additional check is made if the Object being moved is soft and
the Objects are soft. This is shown in Listing 4.111.

Listing 4.111: WorldManager extensions to moveObject() to support no soft

1 // If object does not want to move onto soft objects, don’t move.
2 if p_o->getNoSoft () and p_temp_o->getSolidness () is SOFT then

3 do_move = false

4 end if

4.10.1.4 World Boundaries — Out of Bounds Event

Generally, game objects expect to stay inside the game world. This is not to say that all
game objects are on the screen at the same time — for example, think of a side scroller
where a lot of the level is off the screen — but game objects stay in the known game world.
As such, when a game object moves outside of the game world it is helpful to tell indicate
this via an event. The out of bounds object still has the option to ignore the event and
stay outside the game world, but in many cases, it will want to take action, such as moving

-
» 0%
N,
.
e\

\

AW N o

~

B W N =

4.10. Kinematics 149

back inside the game world or, in the case of a bullet that would otherwise fly off forever,
destroy itself.

Specifically for Dragonfly, when an Object inside the game world moves outside the
game world, the WorldManager generates an out of bounds event, an EventOut. The move
is still allowed, giving the Object freedom to stay outside of the game world should it so
choose, but providing the information in the form of the event in case the Object wants to
act.

Listing 4.112 provides the header file for the EventOut class. As for all Dragonfly events,
EventOut is derived from the base Event class. Unlike some other events, EventOut only
has information that the event occurred — i.e., that the object moved from inside to outside
the game world. The Object itself already knows where (it has its (x,y) position) so that
does not need to be indicated. The constructor sets event_type to OUT_EVENT. There are
no other attributes and no additional methods — the game programmer merely needs to
consult the Event type (defined in the parent class, Event: : getType()) to determine what
happened.

Listing 4.112: EventOut.h

#include " Event.h”

const std::string OUT_EVENT = "df::out”;
class EventOut : public Event {

public:

EventOut () ;
i

As suggested above, game world boundaries can be different than window boundaries —
this functionality is supported by Dragonfly in subsequent development (see Section 4.13.4
on page 184). However, at this point in Dragonfly, the game world boundaries are deter-
mined by the window boundaries. In order to determine the boundaries of the world, the
DisplayManager routines getHorizontal () and getVertical() can be used.

The WorldManager moveObject () is extended slightly. After a move is allowed (line 47
in Listing 4.109), the Object’s position is checked against the horizontal and vertical limits
obtained from the DisplayManager. If the Object is out of bounds, an EventOut object is
generated and sent to the Object’s event handler as in Listing 4.113.

Listing 4.113: Generate and send EventOut

// Generate out of bounds event and send to Object
EventOut ov
p_o -> eventHandler (&ov)

Note, the WorldManager only sends an EventOut once, when the Object first moves
from inside to outside the game world. If the Object moves outside then stays outside, no
additional events are generated. Presumably, the Object already knows it is outside the
game world upon receiving the first out event, so if it stays outside it does not need to be
reminded.

-
“fi:",
°
* 0\

4.11. Development Checkpoint #7 — Dragonfly Naiad! 150
P 4 g Yy

4.10.2 Program Flow for Moving Objects

We can step back and summarize from a high level the program flow that goes into moving
game Objects, depicted in Listing 4.114.

Listing 4.114: Program Flow for Moving Objects

GM.run ()

WM update ()
Object predictPosition ()
new_pos += velocity
moveObject ()
getCollisions ()
// Send any needed collision events.
if can_move then
Object setPosition (new_pos)
end
// Send any needed out of bounds events.

Inside the game loop, the game manager calls WorldManager update(). For each
Object, the world manager asks each Object to predict its position by calling Object
predictPosition(), which computes the predicted position by adding the Object’s velocity
to the current position. The world manager then calls moveObject () calls getCollisions ()
to get a list of any collisions that would result if the Object moved to the predicted po-
sition. The world manager then sends a collision event (EVentCollision) to any and all
Objects in that list. If the Object can actually move to the predicted position (i.e., there
are not two HARD Objects in the same location), the world manager actually changes the
Object’s position by calling setPosition(). Lastly, the world manager computes if the
Object was inside the game world and then went out and, if so, sends it an out of bounds
event (EventOut).

4.11 Development Checkpoint #7 — Dragonfly Naiad!

Continue with your Dragonfly development by adding to your code base to create a Drag-
onfly Naiad.* Steps:

1. Extend the Object class to support kinematics, as in Listing 4.99. Add code to
Object to predict the position if it applies a step of velocity, as in Listing 4.100. Add
extensions to update () to do the velocity step for all Objects, as in Listing 4.101.

2. Test the velocity code thoroughly by making Objects with different starting locations
and different velocities. Verify visually and via logfile messages that Objects move an
appropriate amount each step. Test with different velocity values (x and y), positive
and negative and greater than 1 and less than 1.

* Did you know (#9)?7 A naiad is a dragonfly in larval stage.

s

Ye

5
s

4.11.

Development Checkpoint #7 — Dragonfly Naiad! 151

. Extend the WorldManager to support collisions, as in Listing 4.106. Implement sup-

port function positionsIntersect() in utility.cpp, as per Listing 4.107. Imple-
ment getCollisions() in the WorldManager based on Listing 4.108. Support for
solidness needs to be added to the Object class, based on Listing 4.104 and List-
ing 4.103. Lastly, write moveObject () based on Listing 4.109. EventCollision needs
to be created for this, following Listing 4.105, and can be tested outside of the game
engine before using it in moveObject (). Since the code for all the above is fairly
extensive, add liberal writeLog() statements to provide meaningful output to verify
it is working.

. Write numerous test cases to verify that collisions work properly. Start first with a

solid Object that attempts to move onto another solid Object. Verify the move is not
allowed (visually and in the logfile) and make sure both Objects get an event with
appropriate pointers. Next, test that soft Objects can move on each other, but that
all soft Objects colliding get collision events. Lastly, check with test examples that
spectral Objects do not generate collisions.

. Create an EventOut class based on Listing 4.112. Add EventOut.cpp to the project

and stub out each method so it compiles. Add code to the WorldManager move-
Object () method that sends the out of bounds event to objects that move out of the
game world. Refer to Listing 4.113, as needed.

. Test the out of bounds additions by making a game object that starts inside the game

world, but soon moves out. OQutput messages should be seen in the logfile, but events
should checked and handled by the Object eventHandler () method. Make different
Objects that move in and out, multiple times and verify only one EventOut message
is generated each time an Object moves from inside to outside.

After completing the above steps (and all the previous Development Checkpoints), you
will have a fully functional game engine!
Features include:

Objects can draw themselves in 2d, as colored text characters.

Objects can appear above (foreground) or behind (background) when drawing.
Objects can get input from the keyboard and mouse.

Objects are moved automatically based on their velocities.

Objects that move out of the game world get an “out of bounds” event.

Objects have solidness — soft, hard, or spectral — affecting movement and collisions.

Solid Objects that collide get a collision event, providing information on both Objects
enabling them to react appropriately.

s

Ye

5
s

4.11. Development Checkpoint #7 — Dragonfly Naiad! 152

The above functionality to support objects, graphics, input, and interaction with colli-
sions allows creation of a wide variety of games. Consider, for example, making the game
Saucer Shoot from Section 3.3. The core gameplay for Saucer Shoot can be made (aside
from the Points and Nuke ViewObjects), with the main exception that Dragonfly Na-
iad only supports single character game objects without animation, rather than animated,
multi-character sprites.

s

Ye

5
s}

4.12. Resource Management 153

4.12 Resource Management

Games have a wide variety and often large number of resources, also known as assets or
media. Examples include meshes, models, textures, animations, audio clips, level layouts,
dialog snippets and more. Offline, most game studios use tools to help create, store and
archive assets during game development. When the game is running, however, the game
engine needs to manage the assets itself in an efficient manner, loading, unloading and
manipulating the assets as needed.

Since many assets are large, for efficiency, a game engine uses the flyweight design
pattern, sharing as much data as possible with similar objects. For the game engine, this
means keeping only one copy of each asset in memory and having all game objects that
need the asset to refer to this one copy. This helps manage memory resources, which can be
scarce for high-end games, or on resource constrained devices, such as mobile hand-helds.
Similarly, a game engine often manages the lifetime of the asset, bringing it in from memory
on demand (“streaming”), and removing it from memory when it is no longer needed. Some
game engines, particularly 3d game engines, handle composite resources, such as keeping a
mesh, skeleton and animations all grouped with a 3d model. Assets that have been loaded
into memory sometimes need additional processing before rendering. Ideally, support for
all of the above is provided in a single, unified interface for both the game programmer and
for other components in the engine.

In Dragonfly, one of the assets managed are sprites, stored as text files. A game studio
using Dragonfly could have offline tools that help create, edit and store sprites as part of the
development environment. Such tools could help artists correctly animate and color text-
based sprites, and provide revision control and archival functions for sharing and developing
the sprites.

However, the Dragonfly engine itself needs to only be able to understand the format of
a sprite file so that it can load it into the game when requested. To do this, data structures
(classes) are required for Frames (see Section 4.12.1 on page 153) that provide the dimensions
of the sprite and hold the data, Sprites (Section 4.12.2 on page 155) that provide identifiers
for the asset and hold the frames, and Animations (Section 4.12.5 page 174) for providing
support for per-Object sprite animation. The ResourceManager (Section 4.12.3 on page 160)
provides methods for the game programmer to use the sprite assets.

4.12.1 The Frame Class

Frames in Dragonfly are simply text rectangles of any dimension that know how to draw
themselves on the screen. The frames themselves do not have any color, nor do individual
characters — color is an attribute associated with a Sprite. Some frame examples are shown
in Listing 4.115. Frames are not animated. In order to achieve animation, sequences of
frames are shown in rapid succession so it looks like animation (see Figure 3.2 on page 14).

Listing 4.115: Frame examples

—— \ A
/__o_\ o= \._\/ __ S) N\ ___/
/ S A A Sy A A S B B S S A |
Jo /N /N C/NCC/NC

‘vﬁ’{.,

10

4.12. Resource Management 154

u J

The individual cells in a frame are characters. These could be stored in a two dimensional
array. However, in order to use the speed and efficiency of the C++ string library class,
Dragonfly stores the entire frame as a single string.

The definition for the Frame class is provided in Listing 4.116. While the attribute
m_frame_str holds the frame data in a one dimensional list of characters, the attributes m_-
width and m_height determine the shape of the frame rectangle. There are two constructors:
the default constructor creates an empty frame (m_height and m_width both zero with an
empty m_frame str)), while the method on line 14 allows construction of a frame with
an initial string of characters and a given width and height. Frames know how to draw
themselves at a given position with a given color, via draw (). Most of the rest of the Frame
methods allow getting and setting the attributes.

Listing 4.116: Frame.h

#include <string>

class Frame {

private:
int m_width; // Width of frame.
int m_height; // Height of frame.

std::string m_frame_str; // All frame characters stored as string.

public:
// Create empty frame.
Frame () ;

// Create frame of indicated width and height with string.
Frame (int new_width , int new_height, std::string frame_str) ;

// Set width of frame.
void setWidth (int new_width);

// Get width of frame.
int getWidth () const;

// Set height of frame.
void setHeight (int new_height);

// Get height of frame.
int getHeight () const;

// Set frame characters (stored as string).
void setString(std::string new_frame_str);

// Get frame characters (stored as string).
std::string getString () const;

// Draw self, centered at position (x,y) with color.
// Return 0 if ok, else —1.

// Note: top—left coordinate is (0,0).

int draw(Vector position, Color color) const;

4.12. Resource Management 155

:aat}; J

N

Most of the Frame methods are straightforward getters/setters, except for draw(),
shown as pseudo code in Listing 4.117.

Listing 4.117: Frame draw()

// Draw self, centered at position (x,y) with color.
// Return 0 if ok, else —1.

// Note: top—left coordinate is (0,0).

int Frame::draw(Vector position, Color color) const;

// Error check empty string.

if frame is empty then
return error

end if

// Determine offset since centered at position .
x_offset = frame.getWidth() / 2
y_offset = frame.getHeight () / 2

// Draw character by character.
for (int y=0; y<m_height; y++)
for (int x=0; x<m_width; x++)
Vector temp_pos(position.getX() + x - x_offset,
position.getY() + y - y_offset);
DM.drawCh(temp_pos, m_frame_str [y*m_width + x], color)
end for // z
end for // y

The first block of code starting on line 5 checks if the Frame is empty to avoid subsequent
parsing errors. This can be checked with the empty () method call on the Frame string (m_-
frame_str) and, if true, an error (-1) is returned.

Subsequently, the method computes the x and y offsets since the frame is always drawn
centered at the position.

The bulk of the method iterates through the frame characters one by one, drawing them
on the screen by calling DisplayManager drawCh() with the appropriate (x,y) position,
character and color.

4.12.2 The Sprite Class

Sprites are sequences of frames, typically rendered such that if a sequence is drawn fast
enough, it looks animated to the eye. The Sprite class in Dragonfly is primarily a repository
for the Frame data, and that knows how to draw one frame. Sprites do not know what the
display rate should be for the frames for animation nor do they keep track of the last frame
that was drawn — that functionality is tracked by the Animation class. Sprites record the
dimension of the Sprite (typically, the same dimension of the Frames), provide the ability to
add and retrieve individual Frames, and give a method to draw a Frame. A Sprite sequence
may look like the example in Listing 4.118.

Listing 4.118: Sprite sequence example

s

Ye

5
s

16

19

4.12. Resource Management 156

/____\ /___o\ /__o_\ /_o__\ /o___\

The Sprite class header file is shown in Listing 4.119. The class needs Frame.h as well as
<string>. The attributes m_width and m_height typically mirror the sizes of the frames
composing the sprite. The frames themselves are stored in an array, m_frame[], which is
dynamically allocated when the Sprite object is created. In fact, the default constructor,
Sprite(), is private since it cannot be called — instead, Sprites must be instantiated
with the maximum number of frames they can hold as an argument (e.g., Sprite(5)). This
maximum is stored in m_max_frame_count, while the actual number of frames is stored in
m_frame_count. The color, which is the color of all frames in the sprite, is stored in m_color.
Each sprite can be identified by a text label, m_label — for example, “ship” for the Hero’s
sprite in Saucer Shoot (Section 3.3).

In the normal course of animation, drawing proceeds sequentially through all the frames
in a sprite until the end, then loops. By default, a sprite frame is advanced sequentially
each game loop (so, 30 frames per second). However, for many animations, this will be too
fast. In order to slow down the animation, the attribute m_slowdown provides a slowdown
rate. For example, a slowdown of 5 would mean the animation is only advanced by 1 frame
for every 5 steps of the game loop. A slowdown of 1 means no slowdown, and a slowdown
of 0 has a special meaning, to stop the animation altogether.

Most of the methods are to get and set the attributes, with addFrame () putting a new
frame at the end of the Sprite’s m_frame array.

Listing 4.119: Sprite.h

// System includes.
#include <string>

// Engine includes.
#include "Frame.h”

class Sprite {

private:

int m_width; // Sprite width .

int m_height; // Sprite height.

int m_max_frame_count; // Maz number frames sprite can have.

int m_frame_count; // Actual number frames sprite has.

Color m_color; // Optional color for entire sprite.

int m_slowdown; // Animation slowdown (1=no slowdown , O=stop).
Frame *m_frame; // Array of frames.

std::string m_label; // Text label to identify sprite.

Sprite(); // Sprite always has one arg, the frame count.
public:

// Destroy sprite, deleting any allocated frames.

~“Sprite();

// Create sprite with indicated mazimum number of frames.
Sprite(int max_frames) ;

// Set width of sprite.

4.12. Resource Management 157

g

void setWidth (int new_width);

// Get width of sprite.
int getWidth () const;

// Set height of sprite.
void setHeight (int new_height);

// Get height of sprite.
int getHeight () const;

// Set sprite color.
void setColor (Color mnew_color) ;

// Get sprite color.
Color getColor () const;

// Get total count of frames in sprite.
int getFrameCount () const;

// Add frame to sprite.
// Return —1 if frame array full, else 0.
int addFrame (Frame new_frame) ;

// Get next sprite frame indicated by number.
// Return empty frame if out of range [0, m_frame_count —1].
Frame getFrame (int frame_number) const;

// Set label associated with sprite.
void setlLabel(std::string new_label);

// Get label associated with sprite.
std::string getLabel() const;

// Set animation slowdown value.
// Value in multiples of GameManager frame time.
void setSlowdown (int new_sprite_slowdown) ;

// Get animation slowdown value.
// Value in multiples of GameManager frame time.
int getSlowdown () const;

// Draw indicated frame centered at position (z,y).
// Return 0 if ok, else —1.

// Note: top—left coordinate is (0,0).

int draw(int frame_number, Vector position) const;

The Sprite constructor is shown in Listing 4.120. The width, height and frame count

are initialized to zero. The m_frame array is allocated by new to the indicated size. Like all
memory allocation, this should be checked for success — if the needed memory cannot be
allocated (not shown), an error message is written to the logfile and the maximum frame
count is set to 0. The Sprite should initially have the default color, COLOR_DEFAULT, as
defined in Color.h (Listing 4.74 on page 114).

4.12. Resource Management 158

Listing 4.120: Sprite Sprite()

// Create sprite with indicated maximum number of frames.
Sprite::Sprite(int max_frames)

set m_frame_count to O

set m_width to O

set m_height to O

m_frame = new Frame [max_frames]

set max_frame_count to max_frames

set m_color to COLOR_DEFAULT

The Sprite destructor is shown in Listing 4.121. The only logic the destructor has is
to check if frames are actually allocated (frame is not NULL) and, if so, delete the frame
array.

Listing 4.121: Sprite ~Sprite()

// Destroy sprite, deleting any allocated frames.
Sprite::~Sprite()
if m_frame is not NULL then
delete [] m_frame
end if

Once a Sprite is created, frames are typically added to it one at a time until the entire
animation sequence has all been added. Pseudo code for Sprite addFrame (), which adds
one Frame, is shown in Listing 4.122. The method first checks if the frame array (m_frame)
is filled — if so, an error is returned. Otherwise, the new frame is added and the frame count
is incremented. Remember, as in all C4++ arrays, the index of the first item is 0, not 1.

Listing 4.122: Sprite addFrame()
// Add a frame to the sprite.

// Return —1 if frame array full, else 0.
int Sprite::addFrame (Frame new_frame)
if m_frame_count is m_max_frame_count then // Is Sprite full?
return error
else
m_frame[m_frame_count] = new_frame
increment m_frame_count
end if

Sprite getFrame () is shown in Listing 4.123. The first block of code checks if the frame
number is outside of the range [0, m_frame_count-1] — if so, am empty frame is returned.
Otherwise, the frame at the index indicated by frame number is returned.

Listing 4.123: Sprite getFrame()

// Get next sprite frame indicated by number.
// Return empty frame if out of range [0, m_frame_count —1].
Frame Sprite::getFrame (int frame_number) const

if ((frame_number < 0) or (frame_number >= frame_count)) then
Frame empty // Make empty frame.
return empty // Return it.

end if

4.12. Resource Management 159

f)L return frame[frame_number] J

The Sprite draw() method makes a straightforward call to Frame draw() for the indi-
cated frame and position, using the Sprite m_color. For error checking, make sure frame_-
number is within the Sprite bounds before accessing the frame.

4.12.2.1 Transparency (optional)

In some cases, the characters making up a sprite do not occupy the full extent of their box.
For example, a stick figure will have a bounding box around the whole figure, but there will
be empty regions around the head, under the arms, etc. By default, Dragonfly will draw
such blank spaces, occluding whatever characters may have been drawn below it (e.g., the
background), when it may look better to not draw the blanks. For images, providing this
functionality is typically done by declaring one color to be “transparent” where that color,
wherever found in the image, is not rendered on the window, allowing any underlying image
to be seen instead. For Dragonfly, transparency is done in a similar fashion, with the option
of a character being specified as the transparency character — whenever this character is
part of the sprite frames it is not rendered, thus not occluding any underlying characters.
In order to support drawing with transparency, the Frame draw() method must be refac-
tored as shown in Listing 4.124 (refer to Listing 4.117 on page 155 for the original method).
The refactored draw() method takes an additional parameter indicating the transparent
character, with a default value of 0 (not the character ‘0’) meaning no transparency. Inside
the loops iterating over the frame, before a character is drawn (via drawCh()), it is verified
that either the transparency is not 0 or the character is not the transparent character.

Listing 4.124: Frame extension to support transparency

// Draw self centered at position (z,y) with color.
// Don’t draw transparent characters (0 means none).
// Return 0 if ok, else —1.

// Note: top—left coordinate is (0,0).

int Frame::draw(Vector position, Color color, char transparent) const;

// Draw character by character.
for (int y=0; y<m_height; y++)
for (int x=0; x<m_width; x++)
if (transparent not defined) or
(str[y*frame.getWidth () + x] != transparent) then

// drawCh normally

end if

The transparency character itself is an attribute of an Sprite. Extensions needed to
the Sprite class are shown in Listing 4.125. Transparency is stored in a char attribute,
m_transparency (set to 0 in the constructor), with methods to get and set it.

Listing 4.125: Sprite class extensions to support transparency

s

Ye

5
s

4.12. Resource Management 160

private:
char m_transparency; // Sprite transparent character (0 if none).

public:
// Set Sprite transparency character (0 means none).
void setTransparency (char new_transparency);

// Get Sprite transparency character (0 means none).
char getTransparency () const;

Lastly, the Sprite draw() method needs to be modified pass in the transparency char-
acter to Frame draw().

The actual transparency character is typically defined in the sprite file (e.g., trans-
parency #). See the ResourceManager code (Section 4.12.3) for parsing sprite files, adding
in the ability to handle an optional transparency character.

4.12.3 The ResourceManager

With data structures for frames and sprites in place, a manager to handle resources is needed
— the ResourceManager. The ResourceManager is a singleton derived from Manager, with
private constructors and a getInstance() method to return the one and only instance
(see Section 4.2.1 on page 54). The header file, including class definition, is provided in
Listing 4.126.

The ResourceManager constructor should set the type of the Manager to “Resource-
Manager” (i.e., setType ("ResourceManager") and initialize all attributes.

Listing 4.126: ResourceManager.h

// System includes.
#include <string>

// Engine includes.
#include " Manager.h"
#include " Sprite.h”

// Mazimum number of unique assets in game.
const int MAX_SPRITES = 500;

class ResourceManager : public Manager {
private:
ResourceManager () ; // Private (a singleton).
ResourceManager (ResourceManager const&); // Don’t allow copy.
void operator=(ResourceManager const&); // Don’t allow assignment.
Sprite *m_p_sprite [MAX_SPRITES]; // Array of sprites.
int m_sprite_count; // Count of number of loaded sprites.
public:

// Get the ome and only instance of the ResourceManager.
static ResourceManager &getInstance ();

// Get ResourceManager ready to manager for resources.

4.12. Resource Management 161

g

int startUpQ);

// Shut down ResourceManager , freeing up any allocated Sprites.
void shutDown () ;

// Load Sprite from file.

// Assign indicated label to sprite.

// Return 0 if ok, else —1.

int loadSprite(std::string filename, string label);

// Unload Sprite with indicated label.
// Return 0 if ok, else —1.
int unloadSprite (std::string label);

// Find Sprite with indicated label.
// Return pointer to it if found, else NULL.
Sprite *getSprite(std::string label) const;

The ResourceManager uses strings for labels so needs #include <string>. In addi-

tion, it inherits from Manager.h and has methods and attributes to handle Sprites, so also
#includes Sprite.h.

The ResourceManager stores Sprites in an array of pointers (the attribute m_p_sprite[]),

bounded by MAX_SPRITES.

Media files, such as sprite files but also jpeg, wmv and mp3 files, typically have three

parts: 1) a header that contains key parameters for the media file, such as number of frames
and playback rate, 2) a body that had the media data, often with delimiter tags, and 3) a
footer with any final wrap-up information.

Listing 4.127: Saucer sprite file

5)
6
2
4
green
/oo \
/___o\
/o \
/_o__\
Jo___\

Listing 4.127 shows an example of a sprite file for the Saucer in the Dragonfly tutorial.

The first four lines (with numbers) and the line right after the numbers (saying “green”)
are the header, containing information needed to animate the sprite. The meaning of the
header lines are as follows:

1. Frames - the number of frames in the sprite.

4.12. Resource Management 162

2. Width - the width of the sprite frames.
3. Height - the height of the sprite frames.
4. Slowdown - the number of frames to “pause” between frame animations.

5. Color - the Dragonfly color (a string).

The lines following the header are the body with contents for the sprite frames. The
width of each of the body lines is the same as the number on line 2 in the header (the
width parameter, 6 in Listing 4.127). The number of lines for each frame is specified by the
number on line 3 in the header (the height parameter, 2 in Listing 4.127). The lines are
combined to makeup the frame, with the total frames specified by the number on line 1 in
the header (the frames parameter, 5 in Listing 4.127).

Note, sprite files using this format are provided for most of the sprites in the Dragonfly
Saucer Shoot tutorial. They are available for download with versions of the game (e.g.,
https://dragonfly.wpi.edu/tutorials/saucer-shoot/game-final.zip) and from the
book web page (https://dragonfly.wpi.edu/book/sprites.zip), available under the
sprites-simple/ directory.

Tip 18! File input in C++4-. There are many ways to read from a file in C++.
One example of reading from a text file (such as a Sprite file) is in Listing 4.128.
The sample code treats the file as an ifstream, using getline() to read the file
a line at a time. Note, the function getline() automatically removes the newline
(“\n’) delimiter. After each line is read, it is added to a vector (data) via the method
push back() - this is not strictly needed for just reading from a file, but is useful
when the file data is later parsed (e.g., as is a sprite file). The method good() is
true if the file still has data (and there are no other file errors) — when the end of
the file is reached, good () returns false.

Listing 4.128: Example of file input

// Exzample of reading text file.
// Read ome line at a time, writing each line to stdout.
#include <iostream>

3| #include <fstream>

#include <string>

using std::cout;
using std::endl;

int main () {
std::string line;
std::ifstream myfile (" example.txt");
std::vector<std::string> data;

// Open file.

‘«:’{.,

15
16

19

10

4.12. Resource Management 163

if (myfile.is_open()) {

// Repeat until end of file.
while (myfile.good()) {

getline(myfile, line); // Read line from file.
data.push_back (line); // Add line to wvector.
cout << line << endl; // Display line to screen.

}

// Close file when done.
myfile.close () ;

} else

// If here, wunable to open file.
cout << "unable to open file” << endl;

4.12.3.1 Loading Sprites

The method startUp() gets the ResourceManager ready for use — basically, just setting
m_sprite_count to 0 and calling Manager: :startUp().

The method loadSprite() reads in a sprite from a file indicated by filename, stores
it in a Sprite and associates a label string with it. The method unloadSprite() unloads a
Sprite with a given label from memory, freeing it up. The method getSprite () returns a
pointer to a Sprite with the given label.

The ResourceManager loadSprite () is shown in Listing 4.129. The name of the sprite
file is passed in as a string (filename), along with a string with the label name to associate
with the sprite once it is successfully loaded (label).

Listing 4.129: ResourceManager loadSprite()

// Load Sprite from file.
// Assign indicated label to sprite.
// Return 0 if ok, else —1.

int ResourceManager ::loadSprite(std::string filename, std::string label)

// Check if room in array.

if m_sprite_count is MAX_SPRITES then // Sprite array full?
return error

end if

open file

// Read sprite Header.
Get first line from file

frames = atoi() on 1line
get second line from file
width = atoi() on 1line

get third line from file
height = atoi() on line

=

W N

SIS

W oW W W W W W W N

AR R R R R R A A A W oW
© 00 N O kR W N O © w9

4.12. Resource Management 164

get fourth line from file

slowdown = atoi() on line

get fifth line from file

if line is " black” then
color = BLACK

else if line is "red” then
color = RED

end if

// Make new Sprite.

new Sprite (with frame count)
set sprite height

set sprite width

set sprite slowdown
set sprite color

// Read and add frames to Sprite.
for £f = 1 to frame count
create empty string
for h = 1 to height
get line from file
append line to string
end for
set frame string to string
set frame height
set frame width
add frame to Sprite
end for

close file

// If no errors in any of above, add to resource manager.
add label to Sprite

m_p_sprite[m_sprite_count] = p_sprite

increment m_sprite_count

return ok

The method starts by opening the file indicated by filename. After that, all the lines
in the header are read in and parsed one by one, lines 13 to 27. Once the number of frames
is known from the header, on line 30 a new Sprite is created (e.g., if the sprite has 5 frames,
then new Sprite(5)). Then, the method loops for each frame (starting on line 37), reading
each line and adding it to the frame string (lines 39 to 42). When a complete frame is
read in, the frame attributes are set (lines 43 to 45) and the frame is added to the Sprite
(line 46). When the specified (in the header) number of frames are read in, the file is closed.
Assuming everything above went well, the final steps from line 52 are to: 1) associate label
with the Sprite, 2) add the Sprite to the m_p_sprite array, and 3) increase m_sprite_count.

Note, error checking should be done throughout, checking header information, (e.g.,
header lines corresponding to expected parameters), length of lines (e.g., body lines ex-
actly as long as the frame width), number of lines (e.g., exactly enough for the specified
number of frames, each the specified height), and general file read errors. If any errors are

-

‘Oﬁﬁ,‘
.
* 0\

N =

4.12. Resource Management 165

encountered, the line number in the file where the error occurred should be reported along
with a descriptive error in the logfile. Listing 4.130 shows an example of a possible error
message. In this example, line 12 of the file has “/o___\ 7 which is 7 characters (there is
an extra ‘ ’ at the end, a common error), while the header had indicated the width was only
6. Making the error message as descriptive as possible is helpful to game programmers to
help “debug” their sprite files. Upon encountering an error, all resources should be cleaned
up (i.e., delete the Sprite and close the file), as appropriate.

Listing 4.130: Example error reported when parsing Sprite file

Loading 'explosion’' from file 'sprites/explosion—spr.txt’.
Error line 12. Line width 7, expected 6.

Line is: "/o___\ "

Sprite 'explosion’ not loaded.

Dragonfly can run on Windows, Linux or Mac computers. Unfortunately, text files are
treated slightly differently on Windows versus Linux and Mac. In Windows text files, the
end of each line has a newline (‘\n’) character and a carriage return (‘\r’) character, while
in Unix and Magc, the end of each line only has a newline character. In order to allow
Dragonfly to work with text files created on any of the three operating systems, pseudo
code for an optional utility, discardCR(), is shown in Listing 4.131. A string, typically
just read in from a file, is passed in via reference (&str). The function examines the last
character of this string and, if it is a carriage return, it removes it via str.erase().

Listing 4.131: discardCR() (optional)

ol // Remove the carriage return (‘\r’) from line

1
2

3
4
5

N

oA W

// (if there — typical of Windows).
void discardCR(std::string &str)
if str.size() > 0 and str[str.size()-1] is '\r' then
str.erase(str.size() - 1)
end if

Once in place, discardCR() can be called each time after reading a line from a file.

The complement of loadSprite() is unloadSprite(), which is much simpler. un-
LoadSprite() is shown in Listing 4.132. The method loops through the Sprites in the
ResourceManager. If the label being looked for (label) matches the label of one of the
Sprites (getLabel()) then that is the Sprite to be unloaded. The Sprite’s memory is
deleted via delete. Then, in a loop starting on line 11, the rest of the Sprites in the array
are moved down one. Since one Sprite was unloaded, the sprite count is decremented on
line 11. If the loop terminates without a label match, the sprite to be unloaded is not in
the ResourceManager and an error is returned.

Listing 4.132: ResourceManager unLoadSprite()
// Unload Sprite with indicated label
// Return 0 if ok, else —1.
int ResourceManager ::unloadSprite (std::string label)

for i = 0 to m_sprite_count-1

if label is m_p_sprite[i] -> getLabel() then

s

Ye

5
s

4.12. Resource Management 166

delete m_p_sprite[il]

// Scoot over remaining sprites.

for j = i to m_sprite_count -2
m_p_spritel[j] = m_p_sprite[j+1]
end for

decrement m_sprite_count
return ok
end if
end for

return error // Sprite not found.

The final method needed by the ResourceManager is getSprite(), with pseudo code
show in Listing 4.133. The method loops through all the Sprites in the ResourceManager.
The first Sprite that matches the label label is returned. If line 10 is reached, the label
was not found and an error (NULL) is returned.

Listing 4.133: ResourceManager getSprite()

// Find Sprite with indicated label.
// Return pointer to it if found, else NULL.
Sprite *ResourceManager ::getSprite(std::string label) const

for i = 0 to m_sprite_count-1
if label is m_p_sprite[i] -> getLabel () then
return m_p_sprite[i]
end if
end for

return NULL // Sprite not found.

Lastly, ResourceManager shutDown(), shown in Listing 4.134 frees up any allocated
Sprites by iterating through the m_p_sprite array and calling delete on each. After that,
it sets the array count to zero and calls Manager: : shutDown ().

Listing 4.134: ResourceManager shutdown()

// Shut down manager, freeing up any allocated assets.
void ResourceManager ::shutDown ()
for i = 0 to m_sprite_count-1
if m_p_sprite[i] not NULL then
delete m_p_sprite[i]
end if
end for

set m_sprite_count to O

call Manager ::shutDown ()

N

s w

4.12. Resource Management 167

4.12.3.2 Sprites with Robust Formatting (optional)

The trouble with the sprite file format as it is currently specified is that it is not very
forgiving of errors for the artists that created the sprites. The header numbers (e.g., width
and height) have to be specified in ezactly the right order (e.g., not height and then width)
or the sprite will not parse properly, but there are no keywords or guides to help the artist
“debug” their sprite files when they create them. In short, the file format is “brittle”.
While this makes the code to parse sprite files easier, and hence is used for the initial
implementation, a more “robust” format for creating sprites can help facilitate the art-
game production pipeline.

See the Dragonfly tutorial for an example of a sprite file with a “robust” format.

For robust Dragonfly sprite files, the delimiters are indicated with all caps (e.g., HEADER)
in order to make creating and parsing sprite files easier. For parsing code, HEADER, BODY,
and FOOTER are used to deliminate the header, body and footer of the sprite, respectively. In
the header, the keywords frames, height, width, slowdown, and color define parameters
for the sprite. The header parameters can be in any order. In the body, end is used to mark
the end of each frame. In the footer, version is used to indicate sprite version information.

To provide support for sprites with robust formatting, add the consts in Listing 4.135
to the ResourceManager header file. These are delimiters used to parse the sprite files — the
ResourceManager “understands” the file format and uses the delimiters as tokens during
parsing.

Listing 4.135: ResourceManager.h extensions to support a robust sprite format

// Delimiters used to parse Sprite files —
// the ResourceManager ‘knows’ file format.

const std::string HEADER_TOKEN = "HEADER";

const std::string BODY_TOKEN = "BODY";

const std::string FOOTER_TOKEN = "FOOTER”;

const std::string FRAMES_TOKEN = "frames”;

const std::string HEIGHT_TOKEN = " height”;

const std::string WIDTH_TOKEN = "width";

const std::string COLOR_TOKEN = "color”;

const std::string SLOWDOWN_TOKEN = "slowdown";
)| const std::string END_FRAME_TOKEN = "end”;

const std::string VERSION_TOKEN = "version”;

Then, a re-factored version of the ResourceManager loadSprite() is shown in List-
ing 4.136.

Listing 4.136: ResourceManager loadSprite()

// Load Sprite from file.

// Assign indicated label to sprite.

// Return 0 if ok, else —1.

int ResourceManager ::loadSprite(std::string filename, std::string label)

open file filename

read all header lines // header has sprite format data
parse header

s

Ye

5
s}

10
11
12
14
15
16

17

19
20
21
22
23
24
25

26

4.12. Resource Management 168

read all body lines // body has frame data
new Sprite (with frame count)
set sprite height
set sprite width
set sprite slowdown
set sprite color
for £f = 1 to frame count
parse frame
add frame to Sprite
end for

read all footer lines // footer has sprite wversion
parse footer

close file

// If no errors in any of above, add to resource manager.
add label to Sprite

m_p_sprite[m_sprite_count] = p_sprite

increment m_sprite_count

The method proceeds by opening the file indicated by filename. After that, all the
lines in the header are first read in and then parsed. Once the number of frames is known
from the header, on line 11 a new Sprite is created (e.g., if the sprite has 5 frames, then
new Sprite(5)). Then, the method reads in all the lines in the body, and parses them as
frames, one frame at a time. Each frame is added to the Sprite as it is parsed. When the
specified (in the header) number of frames are read in, all the lines in the footer are read
in and then parsed. Assuming everything above went well, the final steps from line 27 are
to: 1) associate label with the Sprite, 2) add the Sprite to the m_p_sprite array, and 3)
increase m_sprite_count.

Note, as for the simple format, error checking should be done throughout, looking at
file format, length of line, number of lines, frame count and general file read errors. If
any errors are encountered, the line number in the file should be reported along with a
descriptive error in the logfile.

Coding the loadSprite () method is much easier with a few “helper” functions, shown
in Listing 4.137.

Function getLine () reads a single line from a file and does some error checking.

Function readData() reads a section (e.g., the body, recognized by the delimiter, such
as BODY) from the sprite file and stores each line in a vector for later parsing. And error is
indicated (an empty vector is returned) of the section beginning and end is not found.

Function matchLineInt () matches a specified token from the vector (a sprite file sec-
tion), returning the associated integer value. For example, the line “frames 57 called with
a tag of “frames” would return the integer “5”. Lines that match are removed from the
vector.

Function matchLineStr() does the same thing, but returning associated string found.
For example, the line “color green” called with a tag of “color” would return the string
“green”).

Function matchFrame () reads a frame of a given width and height from a file, returning
the Frame. The used frame lines are removed from the vector.

s

Ye

5
s

4.12. Resource Management 169

All functions should report any parsing errors in the logfile. None of these methods are
part of the ResourceManager, but rather are stand alone utility functions. They are not
general engine utility functions either (i.e., it is unlikely a game programmer would ever use
them), so do not really belong in utility.cpp. Instead, they can be placed directly into
ResourceManager. cpp.

Listing 4.137: ResourceManager helper functions for loading sprites

»

// Get next line from file , with error checking (
std::string getlLine(std::ifstream *p_file);

means error).

// Read in next section of data from file as wvector of strings.

// Return wvector (empty if error).

std::vector<std::string> readData(std::ifstream xp_file,
std::string delimiter);

// Match token in wvector of lines (e.g., ”frames 57).

// Return corresponding wvalue (e.g., 5) (=1 if not found).

// Remove any line that matches from wvector .

int matchLinelInt (std::vector<std::string> *p_data, const char *token);

// Match token in wvector of lines (e.g., 7color green”).
// Return corresponding string (e.g., 7green”) (77 if not found).
// Remove any line that matches from vector.

j| std::string matchLineStr (std::vector<std::string> *p_data, const char x*

token) ;

// Match frame lines until "end”, clearing all from wvector.
// Return Frame.
Frame matchFrame (std::vector<std::string> *p_data, int width, int height);

Function getLine () is shown in Listing 4.138. The function reads one line from the file
into the string line. The code also needs to #include the fstream header file. Note, error
checking (m_p_file -> good() is done to catch any file input errors.

Listing 4.138: getLine()

// Get next line from file , with error checking (
std::string getLine(std::ifstream *p_file)

77 means error).

string line

getline (*p_file, line)

if not (p_file -> good()) then
return error

end if

return line

Function readData() is shown in Listing 4.139. The function takes in a token that is
used to delimit the section of the sprite file (i.e., HEADER, BODY, FOOTER) and the file
to be read from. It then pulls all the lines from the file using the delimiter to mark the
beginning and end, storing the “good” lines as data in an std::vector. That vector is
returned. Errors are checked for missing the delimiter beginning or end and file errors.

4.12. Resource Management 170

Listing 4.139: readData()

ol // Read in next section of data from file as wvector of strings.
1| // Return wvector (empty if error).

2| std::vector<std::string> readData(std::ifstream x*p_file,

3 std::string delimiter)

"

5 beginning = "<
6 ending = "</” + delim +

" "

+ delim +

> // Section beginning
>" // Section ending

8 // Check for beginning.

9 s = getLline ()

10 if s not equal beginning then
11 return error

12 end if

14 // Read in data until ending (or not found).

15 s = getLline ()

16 while (s not equal ending) and (not s.empty()) do
17 push_back(s) onto data

18 s = getLline ()

19 end while

21 // If ending mnot found, then error.
22 if s.empty() then

23 return error
24 end if

25

26 return data

Function matchLineInt () is shown in Listing 4.140. The function examines the data
vector one line at a time, looking for a match of the indicated token. The match on Line 9
can be made using compare(), — e.g.,

({ i -> compare(0, strlen(token), token)]

If the token is the one expected, the remainder of the string after the token is converted on
Line 10 into an integer using atoi() — e.g.,

({ atoi(line.substr(strlen(token)+1).c_str())]

The number extracted with atoi() is returned.

Listing 4.140: matchLinelnt()

ol // Match token in wvector of lines (e.g., "frames 57).

1| // Return corresponding wvalue (e.g., 5) (=1 if not found).
2| // Remove any line thal matches from wvector.

3l int matchLineInt (std::vector<std::string> *p_data,

4 const char *token)

6/ // Loop through all lines.

71 auto i = p_data -> begin() // wector iterator
8 while i not equals p_data -> end()

9 if i equals token then

10 number = atoi() on line.substr ()

4.12. Resource Management 171

11 i = p_data -> erase(i) // clear from wvector
12 else

13 increment i

14 end if

15 end while
16
17 return number

The same logic is used for matchLineStr () with the exception that the final string after
the token is not converted to an integer, but is instead just returned (e.g., line.substr(
strlen(token) + 1)).

The method matchFrame() is shown in Listing 4.141. The function is provided the
height of the frame via the height parameter. So, using a for loop, the function loops for
a count of the height of the frame, handling a line at a time. Each line represents one row
of the frame. If any line is not the right width (also passed in as a parameter, via width),
an error is returned in the form of an “empty” Frame. If the frame is read in successfully,
an additional line is handled, shown on line 20. Since the frame is over, this line should be
END_FRAME_TOKEN (“end”), otherwise there is an error in the file format.

Errors of any kind should result in an error code (empty Frame) returned by the function.
If line 26 is reached, the frame has been read and parsed successfully, so a Frame object
containing the frame is created and returned. The line number should be used to report
(in the logfile) where any errors occurred in the input file, and should be appropriately
incremented as the parsing progresses.

Listing 4.141: matchFrame()

ol // Match frame lines wuntil "end”, clearing all from wector.
1| // Return Frame (empty if error).
2| Frame matchFrame (std::vector<std::string> *p_data, int width, int height)

string line, frame_str

6 for h = 1 to height

8 line = p_data -> front()

9

10 if line width != width then
11 return error

12 end if

14 p_data -> erase(p_data->begin())
16 frame_str += line

18 end for
19
20 line = p_data -> front()

21 if line is not END_FRAME_TOKEN then
22 return error

23 end if

24 p_data -> erase(p_data->begin())

26 create frame (width, height, frame_str)

28

4.12. Resource Management 172

return frame

With robust sprite formatting in place, it can be convenient for Dragonfly to support
both the original simple sprite file format as well as the robust sprite file format. A technique
that can “auto-detect” whether a sprite file is in the simple format or the robust format is
shown in Listing 4.142. Basically, the first line of the file is read. If this line is the string
“HEADER,”, it is assumed the file has a robust sprite file format and loading proceeds
assuming this format. Otherwise, it is assumed the file has a simple sprite file format. In
this (simple) case, the first line should be an integer (the number of frames), so the line
is converted to a number (using atoi()) and checked. If the number is not a positive, an
error is indicated — the file may not be a sprite file at all.

Listing 4.142: Auto-detecting sprite file format.

get line from file

if line is "<HEADER>" then
loadRobustSprite ()

else if atoi() on line > 0
loadSimpleSprite ()

else
error // unknown format

end if

4.12.4 Development Checkpoint #8!

Continue Dragonfly development. Steps:

1. Make the Frame class, referring to Listing 4.116. Add Frame.cpp to the project and
stub out each method so it compiles. Implement and test the Frame class outside of
any game engine components, making sure it can be loaded with different strings and
frame dimensions.

2. Implement the Frame draw(), referring to Listing 4.117. Test with a variety of Frames
and positions outside of an actual Sprite or game Object.

3. Make the Sprite class, referring to Listing 4.119. Add Sprite.cpp to the project and
stub out each method so it compiles. Code and test the simple attributes first (ints
and label).

4. Implement the constructor Sprite(int max frames) next, allocating the array. Im-
plement addFrame () based on Listing 4.122 and getFrame () based on Listing 4.123.
Test that you can create Sprites of different numbers of frames and add individual
Frames to them. Be sure the upper limit on frame count is protected. Testing should
be done outside of the other engine components, and Frames can be arbitrary strings
at this point.

s

Ye

5
s

4.12. Resource Management 173

5. Implement the Spritedraw() and test with a variety of Sprites (use those from Chap-
ter3 — Saucer Shoot), again still outside of a game Object.

6. Make the ResourceManager, as a singleton (described in Section 4.2.1 on page 54),
referring to Listing 4.126. Add ResourceManager.cpp to the project and stub out
each method so it compiles.

7. Implement loadSprite () referring to Listing 4.129. For testing, sprites with a simple
format can be made from the Sprite files from Saucer Shoot by keeping the line
orders the same, but removing all keywords (e.g., “width”, “height” and “end”). Test
thoroughly. Purposefully introduce errors — to the headers (e.g., count, number),
body (frame data), and footer — and verify that all errors are caught and helpful error
messages reported in the logfile on the right lines.

8. Implement getSprite() based on Listing 4.133 and unloadSprite() based on List-
ing 4.132. Test each method thoroughly. Write test code that uses all the Resource-
Manager methods, loading a Sprite, getting frames, and unloading a Sprite. Repeat
for multiple sprites.

s

Ye

5
s

4.12. Resource Management 174

4.12.5 Using Sprites and the Animation Class

At this point, the game programmer can load sprites into the ResourceManager in a few
simple steps. The first step is to create a sprite file, such as the one in Listing 3.3 on
page 18. The second is to load the sprite into the ResourceManager so the game can make
use of it. Example code to load the saucer sprite for Saucer Shoot (Section 3.3) is shown
in Listing 3.2 on page 17.

To actually use Sprites, say to draw them in an animated fashion on the window,
Dragonfly needs to be extended in a couple of ways. A Sprite holds the “static” properties of
an animation in that they are fixed for all Objects that use the sprite. To actually animate
the Sprite, an Animation class is created to provide control of the Sprite animation for each
associated Object.

Animation is shown in Listing 4.143. The class needs Sprite.h as well as <string>.
The attribute m_p_sprite indicates what Sprite is associated with the Animation and m_name
the corresponding name. The attribute m_index keeps track of which frame is currently be-
ing drawn. The attribute m_slowdown _count is a counter used in conjunction with the Sprite
slowdown rate (see Section 4.12.2 on page 155) to provide animation through cycling the
frames. Methods to get and set each attribute are also provided. The setSprite () methods
also sets the bounding box for the Object (described in the upcoming Section 4.13.2).

Listing 4.143: Animation.h

// System includes.
#include <string>

// Engine includes.
#include " Sprite.h”

class Animation {

private:

Sprite *m_p_sprite; // Sprite associated with Animation.
std::string m_name; // Sprite name in ResourceManager.
int m_index; // Current index frame for Sprite.
int m_slowdown_count; // Slowdown counter.

public:

// Animation constructor
Animation () ;

// Set associated Sprite to new one.

// Note, Sprite is managed by ResourceManager.
// Set Sprite index to 0 (first frame).

void setSprite(Sprite *p_new_sprite);

// Return pointer to associated Sprite.
Sprite *getSprite() const;

// Set Sprite name (in ResourceManager).
void setName (std::string new_name) ;

// Get Sprite name (in ResourceManager).
std::string getName () const;

39

4.12. Resource Management 175

// Set index of current Sprite frame to be displayed.
void setIndex (int new_index) ;

// Get index of current Sprite frame to be displayed.
int getIndex () const;

// Set animation slowdown count (—1 means stop animation).
void setSlowdownCount (int new_slowdown_count) ;

// Set animation slowdown count (—1 means stop animation).
int getSlowdownCount () const;

// Draw single frame centered at position (x,y).

// Drawing accounts for slowdown, and advances Sprite frame.
// Return 0 if ok, else —1.

int draw(Vector position);

1 3

The Animation draw () method, shown in Listing 4.144, basically makes a call to Sprite
draw() then advances the sprite index to the next frame. Line 12 asks the Sprite to draw
the current frame at the indicated position. The block of code at line 15 checks if the
sprite slowdown count is set to -1 — if so, this indicates the animation is frozen, not to be
advanced, so the method is done. Otherwise, the slowdown counter is advanced ,and on
line 24 checked against the slowdown value to see if it is time to advance the sprite frame.
Advancing increments the index, with the code starting at line 31 taking care of looping
from the end of the animation sequence to the beginning. The last two actions at the end
of the method set the slowdown counter and the sprite indices to their values for the next
call to draw().

Listing 4.144: Animation draw()

// Draw single frame centered at position (x,y).
// Drawing accounts for slowdown, and advances Sprite frame.
// Return 0 if ok, else —1.

int Animation::draw(Vector position)

// If sprite not defined, don’t continue further.
if m_p_sprite is NULL then

return
end if

// Ask Sprite to draw current frame.
index = getIndex ()
Sprite draw(index, pos)

// If slowdown count is —1, then animation is frozen.
if getSlowdownCount () is -1 then

return
end if

// Increment counter.
count = getSlowdownCount ()
increment count

= O

W N

SIS

W oW W W W W W W N

AR W W
= o © » 3

10
11
12
13
14
15
16

18

4.12. Resource Management 176

// Advance sprite index, if appropriate.
if count >= getSlowdown () then

count = 0 // Reset counter.

increment index // Advance frame.

// If at last frame, loop to beginning.

if index >= p_sprite -> getFrameCount () then

index = 0
end if

// Set inder for mnext draw().

setIndex (index)
end if

// Set counter for nexzt draw().
setSlowdownCount (count)

With Frame, Sprite and Animation defined, Object can be extended to support sprite
animations. The Object is provided with an Animation object (m_animation) with corre-
sponding setAnimation() and getAnimation() methods, and a method to set the associ-
ated sprite (setSprite()). Up until now, game objects needed to define their own draw()
methods to display something on the window. But with a Sprite now associated with an
Object, the draw() method can now be defined to draw the animated sprite.

Listing 4.145: Object class extensions to support Sprites

private:
Animation m_animation; // Animation associated with Object

public:

// Set Sprite for this Object to animate.
// Return 0 if ok, else —1.
int setSprite(std::string sprite_label);

// Set Animation for this Object to new one.
// Set bounding box to size of associated Sprite.
void setAnimation (Animation new_animation) ;

// Get Animation for this Object.

Animation getAnimation () const;

// Draw Object Animation.
// Return 0 if ok, else —1.

virtual int draw();

The revised Object draw() method shown in Listing 4.146 method simply calls the
Animation draw() method, passing in the Object position.

Listing 4.146: Object draw()

4.12. Resource Management 177

o| // Draw Object Animation.
1| // Return 0 if ok, else —1.
2| int Object::draw()
pos = getPosition ()
1 return m_animation.draw(pos)

Note, draw () is still defined as virtual. This allows a derived class (a game object) to
define its own draw () method, should it so choose. In such a case, the game object’s draw ()
would get called. The game programmer could write code for object-specific functionality
(say, displaying a health bar above an avatar), and still call the built-in Object draw()
explicitly, via Object: :draw()).

The setSprite() method is shown in Listing 4.147. The first block of code retrieves
the Sprite by name (sprite_label) from the Resource Manager, checking that the Sprite
can be found. Then, the Sprite is associated with the m_animation object.

Listing 4.147: Object setSprite()

ol // Set Sprite for this Object to animate.
1| // Return 0 if ok, else —1.
2| int Object::setSprite(std::string sprite_label)

1 p_sprite = RM.getSprite(sprite_label)
5 if p_sprite == NULL then

6 return error

7 end if

9 m_animation.setSprite (p_sprite)

11 /) All is well.
12 return ok

4.12.6 Development Checkpoint #9!
Continue Dragonfly development, getting the engine to support Sprites. Steps:

1. Create an Animation class, following Listing 4.143 and stubbing out the methods.
Make sure that it compiles, first. Then, implement the methods to get and set the
simple attributes

2. Next, implement Animation draw() as per Listing 4.144 testing it carefully.
3. Extend the Object class to support Sprites, as per Listing 4.145.

4. Write the code for the revised Object draw() in Listing 4.146 that uses Animation
to draw. Write code for a game object (inherited from Object) that associates with
a Sprite. Integrate this game object into a game and test the functionality of the
Object draw(). Debugging can be visual (what is seen on the screen), but use logfile
messages to help determine when/where there are problems.

5. Test a variety of game objects with a variety of Sprites (from the Saucer Shoot tutorial
or created by hand). Verify the Sprites can be advanced, slowed down and stopped
and are drawn without visual glitches. Test and debug thoroughly before proceeding.

-
“fi:",
°
* 0\

16

19

4.13. Bozes 178

4.13 Boxes

Boxes (also known as rectangles) are useful for providing a variety of 2d or 3d game features.
Boxes can be used to determine the bounds of an object for collisions, as discussed in
Section 4.10.1. Boxes can also be used to determine the boundary of the game world,
helping detect when a game object goes out of bounds and/or off the boundary of the
visual window. This latter feature is useful for when the game world is larger than what
can be seen on the window, such as is typically the case for adventure-type games that
feature exploring a large work, or for side-scrolling platformers. In this case, the player’s
view of the world is through a view window that moves with, say, the player’s avatar. In
order to support these features, Dragonfly has a Box class.

4.13.1 The Box Class

The definition for the Box class is provided in Listing 4.148. The Box uses a Vector attribute
(corner) for the upper left corner, with horizontal and vertical attributes stored as integers.
The default constructor creates an empty (zero width, zero height) box at (0,0). It is often
useful to create a Box with given attributes, so the other constructor allows specification
of position, horizontal and vertical attributes upon instantiation. Since the Box is just a
container, the rest of the methods just get and set the attribute values.

Listing 4.148: Box.h

#include " Vector.h”

class Box {

private:
Vector m_corner; // Upper left corner of bozx.
float m_horizontal; // Horizontal dimension.
float m_vertical; // Vertical dimension.
public:

// Create box with (0,0) for the corner, and 0 for horiz and vert.
Box () ;

// Create box with an upper—left corner, horiz and vert sizes.
Box(Vector init_corner, float init_horizontal, float init_vertical);

// Set upper left corner of bozx.
void setCorner (Vector new_corner) ;

// Get upper left corner of bozx.
Vector getCormer () const;

// Set horizontal size of box.
void setHorizontal (float new_horizontal);

// Get horizontal size of box.
float getHorizontal () const;

// Set wertical size of bozx.

s

Ye

5
s}

4.13. Bozes 179

29 void setVertical (float new_vertical);

31 // Get wvertical size of box.
32 float getVertical () const;
33 };

4.13.2 Bounding Boxes

Boxes are used for the “size” of an Object, also known as a bounding box since it bounds
the borders of a game object. The bounding box determines the region an Object occupies
and is used in the computation to figure out if an Object collides with another Object.

Extensions to the Object class to support bounding boxes are shown in Listing 4.149.
The bounding box is stored in the private attribute m_box, with methods provided to get
and set it.

Listing 4.149: Object class extensions to support bounding boxes

private:
1 Box m_box; // Box for sprite boundary & collisions.

public:
// Set Object’s bounding boz.

5 void setBox(Box new_box);

~

// Get Object’s bounding boz.
Box getBox () const;

0

The Object bounding box is initialized to a unit square (a Box with horizontal and
vertical of 1), but typically the game programmer wants the bounding box to be the size
of the Object as drawn. Thus, by default, the setSprite() method from Listing 4.145
(page 176) sets m_box to the width and height of the indicated sprite (as computed by the
Animation object, m_animation). This can be done by adding the following line:

u[setBox (m_animation.getBox ())]

to the end of the method in Listing 4.147, right before the return. Animation should be
extended with a getBox () method shown in Listing 4.150.

Listing 4.150: Animation class extensions to support bounding boxes

ol // Get bounding box of associated Sprite.
1| Box Animation::getBox() const

// If no Sprite, return wunit Box centered at (0,0).
1 if not m_p_sprite then

5 Box box(Vector (-0.5,-0.5), 0.99, 0.99)

6 return box

7 end if

of // Create Box around centered Sprite.

10 Vector corner(-1 * m_p_sprite->getWidth() /2.0,
11 -1 * m_p_sprite->getHeight ()/2.0)
12 Box box(corner, m_p_sprite->getWidth (),

s

Ye

5
s

13
14

16

DU A W N = O

4.13. Bozes 180

m_p_sprite->getHeight ())

// Return boz.

return box

A major change needed to support bounding boxes regards collisions. Instead of Objects
only colliding if their positions overlap, with boxes, Objects collide if their bounding boxes
overlap. The idea is to replace the call to positionsIntersect() in the WorldManager
moveObject () method (Listing 4.109 on page 147) with boxIntersectsBox().

D)7

Y

Figure 4.5: Positional possibilities for two overlapping boxes

There are several positional possibilities that must be considered when devising an
algorithm to detect box overlap, as depicted by Figure 4.5. Any algorithm designed to
detect overlap between two boxes in general should be carefully checked against these cases,
both by hand and by coding up specific examples.

For the actual algorithm to test if two boxes overlap, while there are numerous possibil-
ities, an intuitive and fairly fast method is as follows: consider Figure 4.6, where the upper
left corner of a box is (x1, y1) and the bottom right corner is (x2, y2). An overlap of box
A and box B only occurs if the left edge of B is contained within the width of A and the
top edge of box B is contained within the height of box A. If both of those are true, then
the two boxes overlap, otherwise they do not. And vice versa for A within B.

Using this idea, a new function boxIntersectsBox () is created in utility.cpp, with
pseudo code shown in Listing 4.151.

Listing 4.151: boxIntersectsBox()

// Return true if bozes intersect , else false.

bool boxIntersectsBox (Box A, Box B)
// Test horizontal overlap (z_overlap).
Bxl <= Ax1 && Ax1l <= Bx2 // Either left side of A in B?
Ax1 <= Bxl && Bxl <= Ax2 // Or left side of B in A?

10
11
12
13
14
15

4.13. Bozes 181

(AleAyl)i

S

a

E (szJAyZ)

I

1

1

1

1

!]
! I
! !
! I
!]
! I
' A

................ oo : & -

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
' '

Figure 4.6: Corner notation used to determine if boxes overlap

// Test vertical overlap (y-overlap).

Byl <= Ayl && Ayl <= By2 // Either top side of A in B?
Ayl <= Byl && Byl <= Ay2 // Or top side of B in A?
if (x_overlap) and (y_overlap) then
return true // Bozes do intersect.
else
return false // Bozes do mnot intersect.
end if

In replacing the call to positionsIntersect() in the WorldManager getCollisions ()

method (Listing 4.108 on page 146) with boxIntersectsBox (), it is important to remember
that the bounding boxes for Objects are relative to the Objects themselves. For example,
the top left corner of a bounding box for an Object with a 1-character Sprite is (0,0) and
the top left corner of a bounding box for a 3x3 character Sprite (centered on the Object) is
(-1.5,-1.5). Neither of these boxes are in terms of the game world coordinates.

In order to compute collisions, the bounding box position needs to be converted to a

game world position. A useful utility (in utility.cpp) for this conversion is getWorldBox ()
that converts the bounding box positioned relative to an Object to a bounding box posi-
tioned relative to the game world.

Listing 4.152: getWorldBox()

// Convert relative bounding Box for Object to absolute world Box.
Box getWorldBox (const Object *p_o)

Box box = p_o -> getBox ()
Vector corner = box.getCorner ()

=A,

4.13. Bozes 182

5 corner.setX(corner.getX() + p_o -> getPosition().getX())
6 corner.setY(corner.getY() + p_o -> getPosition().getY())
7 box.setCorner (corner)

9 return box

In addition, a similar version can be made that converts a relative bounding box for an
Object to an absolute world Box at position where.

ol // Convert relative bounding Box for Object to absolute world Boz.
1| Box getWorldBox (const Object *p_o, Vector where)

For ease of implementation, the first getWorldBox() can call the second, providing
p-o—>getPosition() as the argument to where.

Once created, collision detection in the WorldManager getCollisions() method is
modified as in Listing 4.153.

Listing 4.153: WorldManager getCollisions() with bounding boxes

ol // Return list of Objects collided with alt position ‘where’
1| // Collisions only with solid Objects.

2| // Does not consider if p_o is solid or mnot.

ObjectList getCollisions (const Object *p_o, Vector where)

6 // World position bounding box for object at where
7 Box b = getWorldBox (p_o, where)

9 // World position bounding box for other object
10 Box b_temp = getWorldBox (p_temp_o)

12 if boxIntersectsBox (b, b_temp) and p_temp_o->isSolid () then

Tip 19! Visually Debugging Bounding Boxes. While debugging bounding
boxes can be done using writeLog() messages via the LogManager, sometimes it
is easier to see the problems with a bounding box rather than figure it out through
print messages. A fairly easy way to do this is to display part of the bounding box on
the screen, above any sprite that is drawn. Specifically, after in Object draw (), after
drawing a Sprite frame, place a symbol (e.g., a ‘+’) for each corner of the bounding
box, with an additional symbol for the Object position. Listing ?? provides code
to do just this. The visual bounding box can be compiled in and out of the engine
using conditional compilation (see Section 4.3.4 on page 58).

4.13.3 Utility Functions (optional)

The function boxIntersectsBox () is not only helpful for Dragonfly in detecting collisions,
it can be a generally useful utility for a game programmer. The name suggests other utilities

-
» 0%
N,
.
e\

\

= O

= W N

4.13. Bozes

shown in Listing 4.154 that are not necessarily used by the game engine but can be used by
game programmers. Line 1 has a simple function that tests whether a value lies between
the other two, useful in computing whether or not two Boxes intersect (see Listing 4.151).
Line 4 has a function that converts the relative bounding box of an Object along with its

position into a Box placed in the world (see Listing 4.152).

Listing 4.154: Utility functions

183

// Return true if wvalue is between min and maz (inclusive).
bool valueInRange (float value, float min, float max);

// Convert relative bounding Box for Object to absolute world Box.

Box getWorldBox (const Object *p_o);
Box getWorldBox (const Object *p_o, Vector where);

// Return true if Box contains Position.
bool boxContainsPosition (Box b, Vector p);

// Return true if Box 1 completely contains Boz 2.
bool boxContainsBox (Box bl, Box b2);

// Return true if Line segments intersect.
// (Parallel line segments don’t intersect).
bool lineIntersectsLine (Line linel, Line line2);

// Return true if Line intersects Box.
bool lineIntersectsBox (Line line, Box b);

// Return true if Circle intersects or contains Boz.
bool circlelIntersectsBox (Circle circle, Box b);

// Return distance between any two positions.
float distance(Vector pl, Vector p2);

The rest of the utility function prototypes shown in Listing 4.154 are not needed for
Dragonfly, but may be useful to game programmers. Lines 7 through 21 are variations of
the boxIntersectsBox () function, but with different shapes.'® Line 24 has a function that

returns the distance between any two positions.

9Classes for Line and Circle are not provided in this book, but are left as exercises for the aspiring

programmer.

AW N

6

4.13. Bozes 184

Tip 20! Line of sight. Many games employ the use of line of sight to determine
if one object can “see” another. For example, can the hero see the treasure chest
behind a wall? Can the bad guy see the hero sneaking up? Can the mummy see
an intruder in the halls of its tomb? In order to check if a first object can “see” a
second object, a common technique is to draw a line from the first to the second.
If the line does not intersect any other objects, the second object is spotted. In
Dragonfly, the function lineIntersectsBox () can be used for this, checking each
Object to see if a line from the position of the first Object to the position of the
second Object for intersection with any other Object. If so, the intersected Object
occludes the vision. If not, there is a clear line of sight.

4.13.4 Views

In a game like Pac-Man, the entire game board is visible on the computer screen. However,
there are many games where this is not the case, games in which the game world is larger
than what can be seen on the screen. Think of a game where the player explores a game-
world, too vast to be contained to one, single computer screen. In such a case, the game
shows a “window” that acts as a “viewport” over the world, with the camera moving to
show different world views in response to player actions. Sometimes, the camera will move
with an avatar, say, keeping the avatar in the window as the world behind it moves. This
is what happens in a platformer such as Super Mario, where the player controls the main
avatar (Mario), jumping and falling vertically and running left and right in a large game
world while the camera follows the avatar. Similarly, in the case of an adventure game such
as The Legend of Zelda, the player controls the main avatar (Link), exploring a very large
world in the course of rescuing the princess. Omnipresent games, where the player has a
top-down view of part of the game world, such as is the case of many real time strategy
games, have the camera show part of the game world on the window while the entire game
world is much larger. For Dragonfly, since it uses text-based cells, the view afforded by the
camera is limited to the size of the initial window. When the game world is larger than this
window, the game engine needs to map the world coordinates to the window coordinates.

Extensions to the WorldManager to support views are shown in Listing 4.155. The limit
provided by the terminal window is called the view boundary and the limit provided by the
game world is called the world boundary. Both boundaries are stored as Box attributes,
privately kept in the WorldManager. Methods to get and set the boundaries are provided.
By default, in the WorldManager constructor, the size of both boundaries, length and width,
should be set to 0.

Listing 4.155: WorldManager extensions to support views

private:

Box boundary; // World boundary.

Box view; // Player view of game world.
public:

// Set game world boundary.
void setBoundary (Box new_boundary) ;

‘v*:’{._

4.13. Bozes 185

// Get game world boundary.
Box getBoundary () const;

// Set player wview of game world.
void setView(Box new_view);

// Get player wview of game world.
Box getView() const;

The GameManager sets the default world boundary and the view boundary to be the
size of the initial window, obtained from the DisplayManager via getHorizontal() and
getVertical () (see Section 4.8.2 on page 113).* The GameManager does this in its own
startUp () method, after both the DisplayManager and WorldManager have been success-
fully started.

The world boundary as a Box provides an immediate opportunity to refactor the “out of
bounds” event from Section 4.10.1.4 (page 148). Listing 4.156 depicts the new pseudo-code.

Listing 4.156: WorldManager moveObject() refactored for EventOut

// Move Object.

/)

// If moved from inside world boundary to outside , generate EventOut.
int WorldManager ::moveObject (Object *p_o, Vector where)

// Do mowve.
Box orig_box = getWorldBox(p_o) // original bounding boz
p_o -> setPosition (where) // move object

Box new_box = getWorldBox (p_o) // nmew bounding box

// If object moved from inside to outside world, generate

// 7out of bounds” event.

if boxIntersectsBox (orig_box, boundary) and // Was in bounds?
not boxIntersectsBox (new_box, boundary) // Now out of bounds?

EventOut ov // Create ”"out” event
p_o -> eventHandler (&ov) // Send to Object
end if

Game objects’ positions are specified in relation to the world coordinates. In other
words, the position attribute in an Object that provides an (x,y) location means that object
should be at (x,y) in the world, but not necessarily at (x,y) on the window. With views,
the world (x,y) position need to be mapped to the view/window (x,y) position.

Consider an example in Figure 4.7. The game world is 35x25 and the origin (0,0) is
in the upper left corner. There are three Objects in the world: A is at (15,10), B is at

* Did you know (#10)7 The Globe Skimmer dragonfly has the longest migration of any insect, back and
forth across the Indian Ocean, about 11,000 miles. — “14 Fun Facts About Dragonflies”, Smithsonian.com,
October 5, 2011.

4.13. Bozes 186

(8,5) and C is at (25,2). The coordinates depicted for all the Objects are relative to the
game world. The view, 10x10, what the player sees on the window, is smaller than the
game world, 35x25. The view origin, position (0,0) on the window, is at position (10,3)
in game world coordinates. To correctly display Objects on the window, the view origin
position is subtracted from each Object’s position before drawing. For example, for Object
A, subtracting (10,3) from (15,10) puts A at location (5,7) on the window. For Object
B, subtracting (10,3) from (8,5) puts B at (-2,2). Since the x coordinate is negative, B is
not drawn. For Object C, subtracting (10,3) from (25,2) puts C at (15,-1). Since the y
coordinate is negative and 15 is greater than the window width, C is not drawn.

(0.0) World boundary

(10,3) View boundary

<0 ——
ST

35

Figure 4.7: View boundary in relation to world boundary

This world-to-view translation is most easily done in the DisplayManager right before
drawing a character on the window. The utility.cpp method worldToView (), shown in
Listing 4.157, converts a world (x,y) position to a view (x,y) position on the window based
on the current view.

Listing 4.157: worldToView()

// Convert world position to view position .
Vector worldToView (Vector world_pos)

view_origin = WorldManager getView() .getCorner ()
view_x = view_origin.getX()
view_y = view_origin.getY ()

Vector view_pos (world_pos.getX()-view_x, world_pos.getY()-view_y)
return view_pos

The DisplayManager drawCh () is re-factored to call worldToView() right before each
character is drawn, shown in Listing 4.158.

Listing 4.158: DisplayManager extensions to drawCh() to support views

o int DisplayManager ::drawCh(Vector world_pos, char ch, Color color) const

1

Vector view_pos = worldToView (world_pos)

s

Ye

5
s}

4.13. Bozes 187

N
—

J

Then, the subsequent calls to draw (e.g., the rectangle and the character) use view_pos
instead of world pos.

With views, not all Objects need to be drawn every loop. For example, in Figure 4.7,
objects B and C are off the visible window so while calling drawCh() would not cause
errors, it is a waste of time. In the WorldManager draw () method, instead of automatically
drawing all objects, first the bounding box for each object is checked for intersection with
the current view. If there is intersection, the Object is drawn. If there is not intersection, the
Object is not drawn. This logic, done inside the “altitude” loop, is shown in Listing 4.159.

Listing 4.159: WorldManager extensions to draw() to support views

1 // Bounding box coordinates are relative to Object,
2 // so convert to world coordinates .
temp_box = getWorldBox (p_temp_o)

// Only draw if Object would be wvisible on window (intersects view).
6 if boxIntersectsBox (temp_box, view) then

7 p_temp_o -> draw()

8 end if

In order to give the game programmer control over the view, the WorldManager is
extended as indicated in Listing 4.160. The method setViewPosition() positions the view
at a specific (x,y) world coordinate, and setViewFollowing() automatically moves the view
to keep the indicated game object, stored in the private attribute p_view_following, in the
center of the window. The latter is useful when the game programmer wants the camera to
follow an avatar as it moves around the world, such as is typical in a platformer game.

Listing 4.160: WorldManager extensions to support view following Object

0| private:
1 Object *p_view_following; // Object view is following.

public:

! // Set wview to center window on position view_-pos.
5 // View edge will not go beyond world boundary.

6 void setViewPosition (Vector view_pos);

sl // Set view to center window on Object.

of // Set to NULL to stop following.

10 // If p_new_view_following not legit, return —1 else return 0.
11 int setViewFollowing (Object *p_new_view_following);

Pseudo code for the method setViewPosition() is shown in Listing 4.161. The method
takes in a position in the game world and sets the view to be centered on that position. In
the first two blocks of code, the method makes sure that the edges of the view do not go
outside of the edges of the game world, horizontally and then vertically. If it does, then the
boundary is moved to flush with the edge.

Listing 4.161: WorldManager setViewPosition()

s

Ye

5
s}

10
11
12
13
14
15
16

19

10
11
12

13

4.13. Bozes 188

// Set wview to center window on position view_pos.
// View edge will not go beyond world boundary.
void WorldManager::setViewPosition(Vector view_pos)

// Make sure horizontal not out of world boundary.

x = view_pos.getX() - view.getHorizontal ()/2

if x + view.getHorizontal () > boundary.getHorizontal () then
X = boundary.getHorizontal () - view.getHorizontal ()

end if

if x < 0 then
x =0

end if

// Make sure vertical not out of world boundary.

y = view_pos.getY() - view.getVertical ()/2

if y + view.getVertical () > boundary.getVertical () then
y = boundary.getVertical () - view.getVertical ()

end if

if y < O then
y =0

end if

// Set wview.
Vector new_corner (x, y)
view.setCorner (new_corner)

Pseudo code for the method setViewFollowing() is shown in Listing 4.162. The first
block of code starting on line 6 checks if p new_view_following is NULL — if so, this indicates
the game programmer intends to stop having the view follow any particular Object.

The second block of code starting on line 12 iterates over all the Objects in the world.
Each Object is compared to the p new view following to make sure the game programmer
has requested to follow a legitimate object. The boolean variable found is set to true if the
Object is matched with one of the known game objects.

The third block of code starting on line 17 sets the p_view_following variable if the
Object has been found and, if so, sets the view position to be centered on that Object.

If the Object is not found, the method returns -1 (an error).

Listing 4.162: WorldManager setViewFollowing()
// Set wview to follow Object.
// Set to NULL to stop following.
// If p_new_view_following not legit, return —1 else return 0.
int WorldManager ::setViewFollowing (Object *p_new_view_following)

// Set to NULL to turn ‘off’ following.
if p_new_view_following is NULL then
p_view_following = NULL
return ok

end if
/) ..
// Iterate over all Objects. Make sure p_new_view_following

// is one of the Objects, then set found to true.

4.13. Bozes 189

/)

// If found, adjust attribute accordingly and set wview position .
if found then

p_view_following = p_new_view_following

setViewPosition (p_view_following -> getPosition)

return ok
end if

// If we get here, was not legit. Don’t change current view.
return error

The last adjustment is to the WorldManager moveObject () method. Here, at the very
end of the method, if the Object has been successfully moved and the Object being moved
is the same as the Object being followed, then the view is adjusted to the new position of
the Object. This logic is shown in Listing 4.163.

Listing 4.163: WorldManager extensions to moveObject() to support views

// If view is following this object, adjust view.

if p_view_following is p_o then
setViewPosition (p_o -> getPosition ())

end if

4.13.4.1 Advanced View Control (optional)

As implemented, when following an Object with the view, the camera keeps the Object
dead-center on the screen at all times (subject to the world boundaries, of course). For the
player, a camera locked in this mode can be tedious for a game where the player is moving
the view a lot. There are a variety of advanced camera control techniques that could
be incorporated into Dragonfly to provide for more advanced camer control techniques,
including zoning, blending and rails. The interested developer is encouraged to see Phil
Wilkins excellent talk on dynamic camera systems [9] with many more details in Mark
Haigh-Hutchinson’s book on real-time cameras [5].

An additional camera technique shown here is dynamics. With dynamics, the camera
still follows an Object, but does not require the Object to be strictly in the middle of the
screen. Instead, the Object can stay within a smaller rectangle inside the screen without
the camera moving. This provides some “slack” that allows the Object to be within a center
area before the camera needs to move.

To support these dynamics, the WorldManager is extended with a view_slack attribute
which is a Vector representing the (x, y) dimensions of the inner rectangle. The default
value for view_slack, set in the WorldManager constructor, should be (0, 0). Attributes to
get and set view_slack, (getViewSlack() and setViewSlack(), respectively) should also
be created.

Then, WorldManager moveObject () is re-factored to support dynamics, as shown in
Listing 4.164.

s

Ye

5
s

4.13. Bozes 190

Listing 4.164: WorldManager extensions to moveObject() to support view dynamics

1 // If view is following this object, adjust view as appropriate .
2 if p_view_following is p_o then

3

|

// Get center of view.

5 view_center_x = view.getCorner ().getX() + view.getHorizontal ()/2

6 view_center_y = view.getCorner ().getY() + view.getVertical () /2

8 // Compute inner ”slack” Box edges.

9 left = view_center_x - view.getHorizontal () * view_slack.getX()/2
10 right = view_center_x + view.getHorizontal () * view_slack.getX()/2
11 top = view_center_y - view.getVertical () * view_slack.getY()/2

12 bottom = view_center_y + view.getVertical() * view_slack.getY () /2
13

14 new_pos = p_o -> getPosition ()

16 // Move view right/left?

17 if (new_pos.getX() < left)

18 view_center_x -= left - new_pos.getX()
19 else if (new_pos.getX() > right)

20 view_center_x += new_pos.getX() - right

22 // Move up/down?

23 if (new_pos.getY() < top)

24 view_center_y -= top - new_pos.getY()

25 else if (new_pos.getY() > bottom)

26 view_center_y += new_pos.getY() - bottom

27

28 // Set new view position .

29 setViewPosition (Vector(view_center_x, view_center_y))

30 end if // following p-o

The first block of code, lines 4 to 12, compute the edges of the inner Box (the “slack”
in the camera dynamics). The next block of code, lines 16 to 26, compare the position of
the Object the camera is following to these edges, moving the edge as appropriate to keep
the Object within the inner Box. The last bit of code, line 29, actually adjusts the view to
the new location.

4.13.4.2 Using Views

The view support added to Dragonfly can be used by the game programmer to provide the
player with a game world larger than the window. Assume, for example, that in Saucer
Shoot (see Section 3.3 on page 15), the game programmer wants the game world to be
about twice as large vertically as a window. This can be done by explicitly setting the
world boundary in game.cpp, as shown in Listing 4.165, setting the view boundary to be
the typical size of 80x24.

Listing 4.165: Explicitly setting game world boundaries

ol // Set world boundaries to 80 horizontal, 50 vertical
1| Vector corner (0,0)

4.13. Bozes 191

2| Box world_boundary (corner, 80, 50)
3| WorldManager setBoundary (world_boundary)

|

s| // Set wview to 80 horizontal, 24 vertical.
6| Box view (corner, 80, 24)

7| WorldManager setView(view)

With the WorldManager controlling the world boundaries, code that generates the out
event (see Section 4.10.1.4 on page 148) should be refactored to use the WorldManager
getBoundary () instead of the DisplayManager window limits.

With the world larger than the window, the intent is probably to always keep the Hero
centered vertically in the window. This could be done by extending the original move ()
method (Listing 3.11 on page 46) with the code defined in Listing 4.166. Basically, when
the Hero moves vertically, the new code adjusts the view by the same vertical amount.

Listing 4.166: Example Hero extension to move() to support views

ol // Always keep Hero centered in window.
1| void Hero::move (float dy)
2| // Move as before...

1 // Adjust view.

5 Box new_view = WorldManager getView();
6 Vector corner = new_view.getCorner ();
7 corner.setY(corner.getY () + dy);

8 new_view.setCorner (corner) ;

9 WorldManager setView(new_view);

Alternatively, the WorldManager can just be told to follow the Hero by calling @@
setViewFollowing() in the Hero’s constructor, as in Listing 4.167.

Listing 4.167: Example Hero extension to support views

ol // Always keep Hero centered in window.
1| void Hero::Hero ()

Y

3 WorldManager setViewFollowing (this);

Tip 21! Player camera control. Game programmers can give the player camera
control without having an avatar with the following trick: a SPECTRAL game object
is created without a sprite. The Object is programmed to respond to mouse or
arrow keys by changing position — left, right, up, down. Then, Dragonfly is told to
follow the game object via setViewFollowing(). To the player, it appears as if the
controls are changing the camera!

4.13.5 Development Checkpoint #10!

Continue Dragonfly development, using Boxes to first provide bounding boxes for Objects
and next to provide view and world boundaries. Steps:

s

Ye

5
s

4.13. Bozes 192

1. Add the Box class, referring to Box.h in Listing 4.148. Add Box.cpp to the project
and stub out each method so it compiles. The Box is really just a container, but test
the Box class thoroughly, anyway. Do this outside of the engine, making sure that
the attributes can all be get and set properly and that the constructor with corner,
horizontal and vertical dimensions specified works.

2. Extend the Object class support bounding Boxes, referring to Listing 4.149. Test
that Object bounding boxes can be set and retrieved properly. Be sure to extend
setSprite() to set the Object Box to the dimensions of the associated Sprite, linked
to the Animation attribute (m_animation).

3. Write the utility function boxIntersectsBox () (Listing 4.151) that determines if two
Boxes overlap. Test this with a program that uses Boxes of a variety of dimensions and
locations with all sorts of intersection combinations (including containment). Verify
all test cases work before proceeding — this function gets called a lot in a typical game.

4. Replace positionsIntersect() with boxIntersectsBox() in the WorldManager.
First, verify using former test code that the engine still works with single character
Objects. Then, create test code with multi-character Sprites, testing a variety of
Objects and collisions. Use one non-moving Object with one moving Object at first
to make debugging simpler.

5. Add views, starting by extending the WorldManager to support views as in List-
ing 4.155. Test the get and set methods for the view and boundary attributes.

6. Write and test the DisplayManager worldToView(), referring to Listing 4.157 as
needed. Put calls to worldToView in the DisplayManager drawCh(), as per List-
ing 4.158. Test that previous code without views still works, then test that having a
view that is not positioned at the world’s origin works as expected. At this point, use
just a hard-coded view in the WorldManager.

7. Extend the WorldManager draw() method to only draw Objects that are in the
view, as shown in Listing 4.159. Test with a variety of Objects that are in the view,
completely out of the view, and partially in/out of the view.

8. Add settings to the WorldManager that enable setting the view, including attributes
and methods from Listing 4.160. Refer to details from Listing 4.161 and Listing 4.162,
as needed. Extend WorldManager moveObject () as in Listing 4.163.

9. For an integrated test, modify the Saucer Shoot tutorial to use views. First, set the
game world boundaries as in Listing 4.165, then modify the Hero move () method as
in Listing 4.166. Test thoroughly, making sure the window is smaller than the game
world settings. Once convinced all works, revert back to the former move () method
and have the view follow the Hero() as in Listing 4.167. Test this thoroughly, too.

s

Ye

5
s

4.14. Audio 193

4.14 Anudio

While sight and feel (interaction) are core elements of most games, sound is nearly as
important. Dragonfly supports audio® using the built-in capabilities of the Simple and Fast
Multimedia Library (SFML).

4.14.1 Simple and Fast Multimedia Library — Audio

SFML provides audio support and recognizes two distinct types: 1) sound effects, which
are typically small (fitting in the computer’s main memory) and, for games, are typically
played in response to a game action. Examples from Saucer Shoot (Section 3.3) include
the “fire” sound when the Hero shoots a Bullet and the “explode” sound when a Saucer is
destroyed. The class sf: :Sound supports this type of audio (i.e., sound effects). 2) music,
which is typically longer (e.g., an entire song) and, for games, is often played continuously
in the background, either during game loading screens or as game action takes place. An
example from Saucer Shoot is the background music that plays during the initial game start
screen. The class sf: :Music supports this type of audio. These differences between sound
effects and music influence how they are handled technically by the SFML classes. For
example, sound effects are usually small enough to load into memory, while music, being
larger, is streamed directly from disk. SFML supports most common audio file formats —
the full list can be found in online documentation. Note, <SFML/Audio.hpp> is needed as
an #include for all SFML audio.

For sf::Sound, the sound data is not stored directly in the object but via a separate
class called sf::SoundBuffer. The sound buffer holds the audio samples in an array of
16-bit integers. Each audio sample is the amplitude of the sound wave at a given point in
time. Sound data from a file (e.g., a .wav file) can be loaded into a sf: : SoundBuffer with
the method loadFromFile (). Use of this method is shown in the top part of Listing 4.168.

Once the audio data is loaded, the buffer can be assigned to an sf::Sound object via
setBuffer() and then played via play(). The latter half of Listing 4.168 shows a code
fragment to do this. Note, sounds can also be played simultaneously without any issues.

Listing 4.168: SFML playing a sound
#include <SFML/Audio.hpp>

sf::SoundBuffer buffer;
if (buffer.loadFromFile ("sound.wav’) == false)

// Error!

sf::Sound sound(buffer);
sound.play ();

Unlike sf: :Sound, sf: :Music does not pre-load audio data but instead streams directly
from a file. So, this means opening a file and then just playing it, as in Listing 4.169.

* Did you know (#11)7 Dragonflies cannot hear, at least not the same way humans can. However,
dragonflies do have receptors in their antennae and legs that are sensitive to pressure changes, such as air
pressure changes from sounds. These receptors supplement their vision. — Ann Cooper. Dragonflies — Q& A
Guide: Fascinating Facts About Their Life in the Wild, Stackpole Books, September 2014.

s

Ye

5
s

4.14. Audio 194

Listing 4.169: SFML playing music
#include <SFML/Audio.hpp>

sf::Music music;
if (music.openFromFile (" music.wav”) == false)
// Error!

music.play () ;

Looping for both sound and music can be done with setLooping(), indicating true to
loop (repeat) the audio from the beginning when at the end and false to stop the audio
when at the end. Both sounds and music can be stopped with stop() and paused with
pause().

One key difference between sf::Music and sf::Sound is that SFML does not allow
copying of sf::Music objects (presumably, this is to help SFML manage resources more
efficiently). To illustrate how this constrains use, the code samples in Listing 4.170 provide
examples of compile-time errors, if tried.

Listing 4.170: SFML sf::Music not copyable

sf::Music music;
sf::Music music_copy = music; // Error!/

void makeItSo(sf::Music music_parameter) {

}
makeItSo (music); // Error!

4.14.2 Dragonfly Audio

To add Dragonfly support for audio, SFML audio support is wrapped by two classes (Sound
and Music), with sound and and music assets managed by the ResourceManager. Wrapping
the SFML audio classes in this way provides for a simpler interface for game programming
and, equally important, means that if Dragonfly were to use an alternate library for audio
support, game code written for Dragonfly would not need to be changed. For game code
that wishes to exploit alternate features of SFML audio, the base SFML types (sf: :Sound
and sf::Music) are exposed.

4.14.2.1 The Sound Class

Dragonfly provides a Sound class for supporting basic sound effects, with the header file
shown in Listing 4.171. The primary attributes provide for a sf::Sound (sound) and a
sf::SoundBuffer (sound buffer). Note, the sf::Sound attribute is a pointer since the
sf::Sound allocation needs to allocated buffer upon instantiating. The attribute m_p_-
sound should be set to NULL in the Sound constructor. The method loadSound() calls
loadFromFile (), using the indicated filename and then allocates the sf::Sound and sets
the sound buffer. See Listing 4.168 for examples. The string label is text to identify
the sound for the game programmer, similar to the label used by the game programmer to
identify a Sprite (see Listing 4.119 on page 156). The methods setLabel () and getLabel ()

‘Oﬁﬁ,‘
.
* 0\

4.14. Audio 195

are used to set and get the label, respectively. The methods play(), stop(), and pause(),
call the corresponding methods on the sound object. The method play() has an option to
loop the sound, too, which is done via setLooping(). Looping is off by default. To allow
the game programmer to manipulate the sf::Sound object directly, getSound() returns
sound. The Sound destructor ("Sound()) should delete the sf::Sound object pointed to
by m_p_sound, if allocated.

Listing 4.171: Sound.h

ol // System includes.

1| #include <string>

2| #include <SFML/Audio.hpp>
3

|

class Sound {

6| private:

7 sf::Sound *m_p_sound; // The SFML sound.

8 sf::SoundBuffer m_sound_buffer; // SFML sound buffer associated with
sound .

9 std::string m_label; // Text label to identify sound.

10
11| public:

12 Sound () ;
13 “Sound () ;
14
15 // Load sound buffer from file.
16| // Return 0 if ok, else —1.

int loadSound (std::string filename);

P
© =

// Set label associated with sound.
void setLabel(std::string new_label);

N

// Get label associated with sound.
std::string getLabel() const;

NN N NN
TR WO =

// Play sound.
// If loop is true, repeat play when done.
void play(bool loop=false);

NN
® N o

N

// Stop sound.
30 void stop ();

32 // Pause sound.
33 void pause();

351 // Return SFML sound.
36 sf::Sound getSound () const;

371 };

4.14.2.2 The Music Class

Dragonfly provides a Music class for supporting music, with the header file shown in List-
ing 4.172. The primary attribute is sf::Music (music). The method loadMusic() calls

-

» 0%
e,
.

"\
\

4.14. Audio 196

openFromFile (), using the indicated filename. See Listing 4.169 for examples.

Note, as mentioned above, SFML does not allow copying of sf::Music objects (See
Listing 4.170). That is why the Music copy and assignment operators are private. As a
note, making the non-private can work, too, but then exposes potentially confusing SFML
errors to the game program when linking.

The string label is text to identify the music for the game programmer, as for Sounds
(see Listing 4.171) and Sprites (see Listing 4.119 on page 156). The methods setLabel ()
and getLabel() are used to set and get the label, respectively. The methods play(),
stop(), and pause(), call the corresponding methods on the music object. The method
play () has an option to loop the sound, too, which is done via setLooping(). Looping is
on by default. To allow the game programmer to manipulate the sf: :Music object directly,
getMusic() returns a pointer to music. A pointer is used because SFML does not allow
music to be copied.

Listing 4.172: Music.h

// System includes.
#include <string>
#include <SFML/Audio.hpp>

class Music {

private:

Music (Music const&) ; // SFML doesn’t allow music copy.

void operator=(Music const&); // SFML doesn’t allow music assignment.
sf::Music m_music; // The SFML music.

std::string m_label; // Text label to identify music.
public:

Music () ;

// Associate music buffer with file.
// Return 0 if ok, else —1.
int loadMusic (std::string filename) ;

// Set label associated with music.
void setLabel(std::string new_label);

// Get label associated with music.
std::string getLabel () const;

// Play music.
// If loop is true, repeat play when done.
void play(bool loop=true);

// Stop music.
void stop ();

// Pause music.
void pause();

// Return pointer to SFML music.
sf::Music *getMusic();

0

10

4.14. Audio 197

2 J

4.14.2.3 Extending the ResourceManager for Audio

With Sound and Music in place, the ResourceManager is extended to manage sound and
music resources. The needed extensions are shown in Listing 4.173. Audio is handled
similarly to Sprites, with fixed sized arrays for Sound and Music objects and count variables
for each. The counts should be initialized to 0 upon startUp(). The “load” methods load
the Sound and Music resources from files and the “unload” methods do the reverse. Two
“get” methods provide pointers to both Sound and Music objects identified by a label.

Listing 4.173: ResourceManager extensions to support audio

const int MAX_SOUNDS = 50;
const int MAX_MUSICS = 50;

private:

Sound sound [MAX_SOUNDS]; // Array of sound buffers.

int sound_count; // Count of number of loaded sounds.
Music music[MAX_MUSICS]; // Array of music buffers.

int music_count; // Count of number of loaded musics.
public:

// Load Sound from file.
// Return 0 if ok, else —1.
int loadSound (std::string filename, std::string label);

// Remove Sound with indicated label.
// Return 0 if ok, else —1.
int unloadSound (std::string label);

// Find Sound with indicated label.
// Return pointer to it if found, else NULL.
Sound *getSound(std::string label);

// Associate file with Music.
// Return 0 if ok, else —1.
int loadMusic (std::string filename, std::string label);

// Remove label for Music with indicated label.
// Return 0 if ok, else —1.
int unloadMusic (std::string label);

// Find Music with indicated label.
// Return pointer to it if found, else NULL.

Music *getMusic (std::string label);

The loadSound () method to load a sound from a file is shown in Listing 4.174. Error
checking is done to ensure the sound array is not filled. On line 9, the call to Sound
loadSound () is made. If successful, the Sound is added to the array. Any error condition
returns -1, while success returns 0.

Listing 4.174: ResourceManager loadSound()

4.14. Audio 198

ol // Load Sound from file .
// Return 0 if ok, else —1.

int ResourceManager ::loadSound (std::string filename, std::string label)

if sound_count is MAX_SOUNDS then
writeLog (" Sound array full.")

6 return error

7 end if

9 if sound[sound_count].loadSound (filename) is -1 then
10 writeLog (" Unable to load from file")

11 return error

12 end if

ul /) All is well.

15 sound [sound_count].setLabel (label)
16 increment sound_count
17 return ok

blah

The complement of loadSound() is unloadSound(), shown in Listing 4.175. The
method loops through the Sounds in the ResourceManager. If the label being looked for
(label) matches the label of one of the Sounds (getLabel ()) then that is the Sound to be
unloaded. SFML does not have a method to actually free up memory for sounds, so the rest
of the Sounds in the array are moved down one. Lastly, the sound count is decremented by
one. If the loop terminates without a label match, the sound to be unloaded is not in the
ResourceManager and an error is returned.

Listing 4.175: ResourceManager unloadound|()

o| // Remove Sound with indicated label.

1| // Return 0 if ok, else —1.

2| int ResourceManager ::unloadSound (std::string label)
4 for i = 0 to sound_count-1

6 if label is sound[i].getLabel () then
8 // Scoot over remaining sounds

9 for j = i to sound_count-2

10 sound[j] = sound[j+1]

11 end for

12

13 decrement sound_count

14

15 return ok

1€

17 end if

18

19 end for

20

21 return error // Sound not found.

w N = O

4.14. Audio 199

The final method needed by the ResourceManager for sound is getSound (), with pseudo
code show in Listing 4.176. The method loops through all the Sounds in the ResourceMan-
ager. The first Sound that matches label is returned. If line 10 is reached, the label was
not found and an error (NULL) is returned.

Listing 4.176: ResourceManager getSound()
// Find Sound with indicated label.
// Return pointer to it if found, else NULL.
Sound *getSound(std::string label);

for i = 0 to sound_count-1
if label is sound[i].getLabel () then
return (&sound[i])
end if
end for

return NULL // Sound not found.

Methods to loadMusic (), unloadMusic () and getMusic() are similar to loadSound (),
unloadSound() and getSound(), respectively. The exception is that since Music is not
copyable, the elements cannot be “scooted over” in the array. Instead, the found label is
just set to empty (""). This means that the empty label is not allowed in loadMusic() to
distinguish from an unloaded Music.

4.14.3 Using Audio

At this point, the game programmer can load sounds and music into the ResourceManager
in a few simple steps. The first step is to obtain/create an audio file, such as those provided
by the Dragonfly tutorial (see Section 3). The second step is to load the audio file, as a
Sound or Music, into the ResourceManager so the game can make use of it. Example code
to load sound effects for Saucer Shoot is shown in Listing 3.7 on page 44 and example code
to load music is shown in Listing 3.9 on page 45.

Once loaded, the game programmer can play audio at an appropriate point. For example,
Saucer Shoot plays music during the game start screen (see Listing 3.8 on page 44) and
plays a sound effect when the player fires a bullet (see Listing 3.10 on page 45).

4.14.4 Development Checkpoint #11!

Continue Dragonfly development to support audio. Steps:

1. Make the Sound and Music classes, referring to Listings 4.171 and 4.172, respectively.
Separately implement and test both classes outside of the game engine. This means
playing various sound effects and music. The audio files from the Saucer Shoot tutorial
(see Section 3.3.12 on page 43) can be used for this. Make sure to test error conditions
(e.g., the file cannot be found), too.

2. Extend the ResourceManager to support sound effects, referring to Listing 4.173 as
needed. Write and test methods to loadSound (), unloadSound (), and getSound().
Refer to Listings 4.174, 4.175, and 4.176, as needed.

-
“fi:",
°
* 0\

4.14. Audio 200

3. Extend the ResourceManager to support music, referring to Listing 4.173 as needed.
Write and test methods to loadMusic(), unloadMusic(), and getMusic(). Base
the music support implementation off the corresponding sound support previously
implemented.

s

Ye

5
s

4.15. Filtering Events (optional) 201

4.15 Filtering Events (optional)

Up to now, all game objects get every event when Manager onEvent() is called. For
example, in the GameManager game loop, all Objects get a step event every loop iteration.
This is useful for Objects that need to do something each step, like the Saucer Shoot Hero
that uses step events to determine when it can shoot again (see Listing 3.5 on page 25). But
many game objects do not need to update themselves each step event — such as walls, trees
or rocks. The general idea, that not all objects want all step events, holds for other events,
too. For example, keyboard events, generated when a player presses keys, are usually only
handled by the object that the player controls (e.g., the Hero). The way the event handler
works (see Listing 4.60), an event that is not acted upon can just be ignored, but that still
means the Object eventHandler () method is invoked, which is inefficient at best, and can
lead to unexpected errors if the game code does not ignore events properly, at worst.

The solution is to filter events, only passing specific events to Objects if they have
indicated interested in events of that type. When an Object does want a specific event, it
registers with the manager in charge of that event. For example, an Object that wants to
get step events registers interest in that event with the GameManager. When the event
occurs, the manager invokes the eventHandler () method only for those Objects that are
interested. Continuing the example, every game loop, the GameManager does not send
an EventStep to all Objects (as it does currently), but only to those Objects that have
registered interest. When an Object is no longer interested in an event, it explicitly un-
registers interest. Note, the engine will do this un-registration automatically, too, when an
Object is removed from the game world. Otherwise, an Object would receive an event even
though it had been removed and deleted, a certain error.

From another vantage, providing for updates to Objects when events occur, and only
providing the updates to interested objects is a form of an observer design pattern (some-
times called a publish-subscribe design pattern).

Figure 4.8 depicts the general idea. Objects, depicted by the grey boxes on the bottom,
register their interest in an event with the appropriate manager, depicted by the ovals at the
top. Objects may be interested in more than one event or in no events at all. For example,
Object 1 is interested in only one event managed by Manager A, while Object 3 is interested
in two events managed by Manager C and one event managed by Manager B, and Object
n is interested in no events at all. Managers keep track of which Objects are interested in
the events they manage, hence the two-way arrows. Managers may be responsible for no
events (e.g., the LogManager), or many events. Even Managers that are responsible for one
or more events may still have no Objects that are interested. For example, this may be the
case for Manager X in Figure 4.8.

Figure 4.9 depicts a close-up view of data structures inside Object and Manager needed
to support filtering events. The Object on the left, using Object 3 from Figure 4.8, keeps
the names of the events in which it is interested in an array of strings, called event name[].
It also has an attribute, event_count, for stores a count of the number of events in which
it is interested.

The Manager on the right, Manager C from Figure 4.8, has an array, event name[], of
the names of interested events as strings which aligns via a parallel array with obj_list[]
which stores the Objects that are interested in that event. The attribute event count

-

- .‘@:
e
* 0\

4.15. Filtering Events (optional)

Manager A

Manager B

Manager C

I I

Object
1

Object
2

Object
3

Figure 4.8: Event interest

stores the count of the number of events in which it is interested.

Manager .Y

Object

event_count K event_count \
(5 |
event_name event_name obj_list
0 event name a 0 event name a ol 02 o3
1 event name b 1 event name b ol o5 o6
b cvent name d bl cvent name c 02 03 09 [
Object 3 Manager C

202

Figure 4.9: Event interest (zoom)

In order to build this functionality, the Manager class needs to be extended to support
event interest management. To start, the Manager stores a list of all the events in which
Objects have registered interest and, for each event, a list of the Objects that have registered
interest. Listing 4.177 shows code fragments that provide attributes and methods for the
Manager class to support interest management.

Listing 4.177: Manager extensions to support interest management
100 // Mazimum number of different

const int MAX_EVENTS = events .

private:

int event_count;
std::string event [MAX_EVENTS];
ObjectList obj_list [MAX_EVENTS];

// Check if event
// If handled, return true
// (Base Manager always

// Number of events.
// List of events.
// Objects interested in

is handled by this Manager.
else false.
returns false.)

virtual bool isValid(std::string event_name) const;

public:
// Indicate interest in event.
// Return 0 if ok, else —1.

event .

=A,

4.15. Filtering Events (optional) 203

15| // (Note, doesn’t check to see if Object is already registered.)
16 int registerInterest (Object *p_o, std::string event_type);

18 // Indicate mo more interest in event.
19| // Return 0 if ok, else —1.
20 int unregisterInterest (Object *p_o, std::string event_type);

2| // Send event to all interested Objects.
23 // Return count of number of events sent.
24 int onEvent (const Event *p_event) const;

MAX_EVENTS is defined to be 100, which is large enough for most games. In fact, most
games have far fewer than 100 different types of events — typically no more than 10 — but
any extra, unused capacity has little overhead.

The private attributes provide data structures to store the events. The variable event_-
list_count keeps track of how many unique events this manager has been asked to register
for (initialized to 0 in the constructor). The events themselves are stored as strings (the
event type, as specified in Listing 4.51) in the array event[], and the objects registered
for the corresponding event are held in obj_1ist[]. Note that event[] and obj_list[]
are parallel arrays, so that the ith element of event[] corresponds to the ith element of
obj_ list[].

When an Object is interested in an event handled by a particular Manager, it invokes
the method registerInterest(), providing a pointer to the Object itself (i.e., this) and
the event name.

When an Object is no longer interested in an event (and when it is being deleted), it
invokes the method unregisterInterest(), providing a pointer to itself and the event
name.

In order to protect a game programmer from registering for interest in an event with
a manager that does not handle that event, the Manager checks the isValid() function
before accepting the registration. This method is virtual so that derived managers can
specify which game events, if any, they manage. When an event occurs, the onEvent ()
method iterates through the list of all Objects that had registered for interest in the event
and sends each of them the event by invoking their eventHandler () methods.

The method registerInterest() is provided in Listing 4.178. The first block of code,
lines 4 to 9, checks to see if there is already an Object that has registered interest in this
event. If so, line 6 adds the indicated Object to the list.

The second block of code, lines 12 to 18, is triggered when the event being registered
for has no other Objects in the list. In this case, the arrays are first checked to see if the
maximum number of events has been reached. If so, the routine needs to return an error
— it will be up to the game code to figure out how to proceed.?’ If there is room, the
event and Object are added to the end the lists and the number of events (event_count) is
incremented.

Listing 4.178: Manager registerInterest()

ol // Indicate interest in event.
1| int Manager::registerInterest (Object *p_o, std::string event_type)

20 Another reason that all system and engine calls should be error checked!

s

Ye

5
s

16

17

4.15. Filtering Events (optional) 204

// Check if previously added this event.
for i = 0 to event_count-1
if event_name [i] is event_type then
insert object into obj_list[i]
return // Ok.
end if
end for

// Otherwise , this ts new event.
if event_count >= MAX_EVENTS then
return // Error, list is full.

end if
event_name [event_count] = event_type
clear obj_list[event_count]l // In case ‘‘re—wusing’’ scooted list.

insert object into obj_list[event_count]
increment event_count

return // Ok.

unregisterInterest () is shown in Listing 4.179. The first block of code, lines 4 to 8§,
looks for the event that is being unregistered for. When found, the corresponding Object
is removed in line 6. Note, if event is not found, the method returns an error (e.g., -1) —
this is not shown in the pseudo code. Also, if the Object to be removed is not found in
obj_list, an error should be returned.

The second block of code, lines 11 to 15, checks if the Object list at the spot of the
event is empty. If so, it “scoots” the items in event and obj_list over and reduces the list
count by one. Line 31 of Listing 4.32 shows an example of how this is done for an array of
integers.

Listing 4.179: Manager unregisterInterest/()

// Indicate mno more interest in event.
int Manager::unregisterInterest (Object *p_o, std::string event_type)

// Check for event.
for i = 0 to event_count-1
if event_name [i] is event_type then
remove object from obj_list[i]
end if
end for

// Is list now empty?

if obj_list[i] is empty then
scoot over all items in object_list []
scoot over all items in event_name []
decrement event_count

end if

return // Ok.

With the Manager storing events and Objects registered for them, the onEvent ()
method can be refactored, as shown in Listing 4.180. Line 5 iterates through all the events
that have been registered for, and line 7 compares the type of the event (via the getType ()

a0
g
e
e\ "

"\
\

4.15. Filtering Events (optional) 205

method of Event) to the event list items. If the event is found, the code on lines 7 to 10
iterates through all Objects, invoking the eventHandler () method for each Object, passing
in the event (p_event). The count of events sent is also incremented, and returned when
the method ends.

Listing 4.180: Manager onEvent() refactored to support filtering events

ol // Send event to all interested Objects.

1| // Return count of number of events sent.

2| int Manager::onEvent (const Event *p_event) const
count = 0

5 for i = 0 to event_count-1

6 if event_name [i] is p_event type then

7 for j = 0 to object_list [i] count

8 call object_list[i][j] -> eventHandler () with p_event
9 increment count

10 end for (j)

11 end for (i)

13 return count

With the above code in place, all Objects no longer receive a step event. Instead, only
those that have done a registerInterest (STEP EVENT) with the GameManager get the
step event. Similarly for the keyboard and mouse events.

Not all managers handle all events. For example, it makes no sense for a game object
to register for interest in a step event with the WorldManager (or LogManager!). In order
to help the game programmer from making the mistake of registering for interest with the
wrong manager, each manager defines an isValid() function. The base class Manager
isValid () method is declared as in Listing 4.181. The method is declared virtual so
that derived classes, such as the GameManager, can define their own isValid() methods,
as appropriate. The base Manager isValid() always returns false — there are no real
instances of the base Manager class and, if there were, it would not handle any events.

Listing 4.181: Manager isValid()

0 // Check if event is handled by this Manager
// If handled, return true else false.
virtual bool isValid(std::string event_type) const;

N

The pseudo code for each derived manager class isValid() is shown in Listing 4.182.
Note, the “DerivedManager” is not the real name of the class — rather, the name is replaced
with the actual manager name (e.g., GameManager) when defined. The body of the method
checks if the event is a valid event (e.g., a STEP_EVENT in the GameManager). If so, it
returns true. Otherwise, it returns false.

Listing 4.182: Derived manager isValid()
ol // Check if event is allowed by this Manager
i // If allowed, return true else false.
2| bool DerivedManager ::isValid(std::string event_type) const

4 if event_type is VALID EVENT1 then

s

Ye

5
s

o= O

0
1

4.15. Filtering Events (optional) 206

return true
end if

if event_type is VALID EVENT2 then

return true
end if

return false

As a specific example, pseudo code for the InputManager isValid() method is shown
in Listing 4.183.

Listing 4.183: InputManager isValid()

// Input manager only accepts keyboard and mouse events.
// Return false if not one of them.
bool isValid(std::string event_name) const

if event_name is keyboard event
return true

else if event_name is mouse event then
return true

else
return false

end if

The isValid () method needs to be defined for the GameManager, Input Manager and
WorldManager (which accepts all events the other two Managers do not).

With isValid () defined, the Manager method registerInterest () is extended to call
isValid () before adding the game object to the list of interested objects. If isValid()
returns false, the Object (and event) are not added.

The last bit of bookkeeping that needs to be done is to extend the Object class so each
Object keeps track of the events it has in which it has registered interest. That way, if
an Object goes out of scope (is deleted) it can automatically unregister for interest in all
events. Not doing this automatic unregistration would mean if the event occurred, the
manager would try to send the event to the Object, but since the Object was deleted and
the memory no longer allocated, a segfault (a spurious memory error) would occur.

Methods registerInterest() and unregisterInterest() are declared as in List-
ing 4.184. Like the Manager’s methods, the Object’s interest management methods both
return O if successful, and -1 if there is an error. Unlike in the Manager, the Object’s meth-
ods only take the event string they are interested in. The array on line 2 and associated
integer on line 1, are to keep track of the events this Object has registered in. Only the
string is needed here, since each event type matches up uniquely with a specific manager.
For example, if the Object is interested in a step event, that is registered only with the
GameManager.

Listing 4.184: Object class extensions for registerInterest()

private:
int event_count;

s

Ye

5
s

4.15. Filtering Events (optional) 207

std::string event_name [MAX_OBJ_EVENTS];

public:

// Register for interest in event.

6 // Keeps track of manager and event.
71 // Return 0 if ok, else —1

8 int registerInterest (std::string event_type);

G W N

10 // Unregister for interest in event.
11 // Return 0 if ok, else —1
12 int unregisterInterest (std::string event_type);

The Object’s registerInterest () method is provided in Listing 4.185. The first block
of code checks to see if there is room in the array of events by comparing event_count to
the maximum (MAX_OBJ_EVENTS, defined in Object.h to be some reasonable maximum say,
100).

The next block of code checks to see if the event is a step event. If so, it registers for
interest with the GameManager by calling registerInterest (), passing in the pointer to
the current Object (this) as well as the event string. As more managers are defined (e.g.,
InputManager), more cases can be handled similarly to the step event (in the “...” region
in line 14). By default, all remaining events are handled by the WorldManager — that way,
user defined events (such as the “nuke” in Saucer Shoot, see Section 3.3.8 on page 34) can
be accommodated. Note, the registerInterest () method call to each individual manager
can fail, depending upon their definition of isValid() and the number of Objects already
registered, so the calls should be error checked.

The last block of code starting at line 20 keeps track of the event name that has been
registered by adding it to the array and incrementing the count of events.

Listing 4.185: Object registerInterest|()

ol // Register for interest in event.

1| // Keeps track of manager and event.

2| // Return 0 if ok, else —I1

3 int Object::registerInterest (std::string event_type)
|

// Check if room.

6 if event_count is MAX_OBJ_EVENTS then
7 return error

8 end if

10 // Register with appropriate manager.

11 if event_type is STEP_EVENT then

12 GameManager registerInterest (this, event_type)
13 else if

15 else
16 WorldManager registerInterest (this, event_type)
17 end if

19 // Keep track of added event.
20 event_name [event_count] = event
increment event_count

NN

24

16

18

19

N
S5 N = O

NN N NN
b PX 2

4.15. Filtering Events (optional) 208

J/ All is well.
return ok

The Object’s unregisterInterest() method is provided in Listing 4.186. The first
block of code checks to see if the event was previously registered — if it was not, an error
(-1) is returned. Similar to registerInterest(), the next block of code checks first to see
if the event is a step event and, if so, unregistering for interest with the GameManager.
Other Managers are handled similarly, in the ‘. ..’ region. By default, any remaining event
is unregistered with the WorldManager. The last block of code starting at line 25 removes
the event from the event name array (at spot index), scooting over the following items.
See line 31 in Listing 4.32 on page 79 for an example of doing “scooting” for an array of
integers.

Listing 4.186: Object unregisterInterest()

// Unregister for interest in event.
// Return 0 if ok, else 1.
int Object::unregisterInterest (std::string event_type)

// Check if previously registered.
found = false
for index = 0 to event_count-1
if event_name [index] is event
found = true
end if
end for
if not found then
return error
end if

// Unregister with appropriate manager.
if event is STEP_EVENT then

call GameManager unregisterInterest with "this” and "event”
else if

else
call WorldManager unregisterInterest with "this” and "event”
end if

// Keep track.
scoot over all items in event_name
decrement event_count

// All is well.

return ok

When an Object is deleted, it is important to remove registration for all events it was
interested in — failure to do so will result in the Object getting the event (by having its
eventHandler () method called) even if it has been deleted. In fact, while game objects can
certainly unregister for events they are no longer interested in, in many cases unregistration
only happens when the Object is deleted. Thus, the destructor of the Object is extended to
automatically unregister for all events the Object had registered for interest in, as shown
in Listing 4.187. Thus defined, game objects will typically register for interest in events,

o,

\

4.15. Filtering Events (optional) 209

but not explicitly unregister since unregistration for all events happens when the life of the
Object is over.

Listing 4.187: Unregistering from all registered events

0ol for index = event_count-1 to O
1 call unregisterInterest with event_name [index]
2| end for

In order to use the new methods, game objects that are interested in input, say, from
the keyboard, would register for interest:

0 // Inside a game object’s constructor .
1 registerInterest (KEYBOARD_EVENT)

Registering for interest in a mouse event is similar, except that MSE_EVENT is used instead
of KEYBOARD_EVENT.

4.15.1 Program Flow for Events

This section provides a summary of the program flow in Dragonfly for events.
Consider an event that needs to be sent to all interested Objects — for example, a step
event or even a user defined event such as “nuke”.

1. The event is created, say EventNuke e.
2. WorldManager onEvent () is called, invoked with the address of the event (i.e., &e).

3. Since WorldManager onEvent () is only defined in the Manager base class, Manager
onEvent () is invoked.

4. Manager onEvent () iterates through the event name[] array until a match for the
event type (via p_event->getType()) is found at index i.

5. Manager onEvent () then iterates through the obj_list[] ObjectList at index i.

6. For each Object (via currentObject()) in the list, its eventHandler () is invoked
with the event (*p_event).

7. The derived Object eventHandler() (e.g., Saucer eventHandler()) inspects (via
p_e->getType ()) and handles the event, as appropriate.

4.15.2 Development Checkpoint #12!

Continue with your Dragonfly development. Specifically, develop functionality for filtering
events from Section 4.15. Steps:

1. Refactor the Manager to support registration for interest in events. See Listing 4.177
for the methods needed. Add the necessary attributes, then write registerInterest ()
and unregisterInterest() based on Listing 4.178 and Listing 4.179, respectively.
Test that Objects can successfully register and unregister successfully, verifying work-
ing code with logfile output.

-
‘Oﬁﬁ,‘
°
* 0\

4.15. Filtering Events (optional) 210

2. Refactor the Manager onEvent () method, referring to Listing 4.180 as needed. Test
that Objects can register for step events and receive step events each game loop while
the game is running.

3. Implement Manager isValid() to accept no events, but define isValid() for the
GameManager, InputManager and WorldManager to handle step, keyboard and mouse
and every other event, respectively. Refer to Listing 4.182 as needed. Verify that a
game object cannot explicitly register for interest in events with inappropriate Man-
ager (e.g, a step event with the InputManager), but can register for interest in events
with an appropriate Manager (e.g., a keyboard and a mouse event with the InputMan-
ager). Create a user-defined event (e.g., a “nuke” event) and verify that this event
can only be registered with the WorldManager.

4. Add attributes and methods supporting the Object’s ability to register and unregis-
ter for events based on the Listing 4.184. Implement the registerInterest() and
unregisterInterest () methods, referring to Listing 4.185 and Listing 4.186, respec-
tively. Verify code functionality by having game code register and unregister for an
event, both the step event and user-defined event, successfully.

5. Add code to the Object’s destructor to unregister from all registered events, referring
to Listing 4.187 as needed. Verify working code by having an object register for a
step event, then destroying the Object. Repeat with multiple events, such as a step
event and a user-defined event.

s

Ye

5
s

4.16. View Objects 211

4.16 View Objects

Thus far, Dragonfly has been discussed in terms of game objects — objects that interact
with each other in the game world. Examples from the Saucer Shoot tutorial (Chapter 3)
include Saucers, Bullets and the Hero. Game objects are the basic building blocks for games
and so are the primary types of objects that a game engine must support.

However, most games include other types of objects that do not interact with other
objects in the game world. Such objects may display information or allow a player to
control game settings. For example, an object that displays a player’s score does not collide
with the hero, spaceships, rocks or any other typical game objects. Buttons and other menu
objects that let players choose settings, weapons or other game options do not interact with
game objects in the world.

In Dragonfly, supporting such view-only objects is done through a new engine object
type, a ViewObject. ViewObjects inherit from the base Object class. This allows the
rest of the engine code, such as the WorldManager and all the utilities such as lists, to
handle ViewObjects as they would standard Objects without change. What ViewObjects
do have that is different are additional attributes that make it more convenient for game
programmers to create “heads-up display” (or HUD) types of interfaces.

While game objects are positioned in game world coordinates, ViewObjects are posi-
tioned relative to the screen coordinates. For example, the game programmer may want
to display the points in the upper right corner of the screen, or the health in the bottom
left corner of the screen. To support the abstraction of screen placement rather than game
world position, ViewObjects use an enum named ViewObjectLocation (as defined on line 8
of Listing 4.188) with positions of top or bottom and left, center and right.

Beyond what is available for Objects, ViewObjects have additional attributes shown
starting on line 24 of Listing 4.188. These include a string (view_string) that provides a
text label for the ViewObject (e.g., “points”), an integer (value) to hold the ViewObject
value (e.g., the player’s points, say 150), a boolean (draw_value) that indicates if said value
should be drawn or not, a boolean (border) that indicates if the ViewObject should be
drawn with a decorative border, and an integer (color) that provides an optional color for
the ViewObject (if different than the default color). Methods to get and set view_string,
value, border, draw_value, and color are provided.

The ViewObject has a custom eventHandler () (line 42) since ViewObjects respond to
special view events provided by the game programmer to, say, update the player’s points
or other game-specific value.

Listing 4.188: ViewObject.h

// System includes.
#include <string>

3| // Engine includes.

#include " Object.h”
#include " Event.h”

// General location of ViewObject on screen.
enum ViewObjectLocation {
UNDEFINED=-1,

s

Ye

5
s

20

4.16. View Objects

g

class ViewObject

TOP_LEFT,
TOP_CENTER,
TOP_RIGHT ,
CENTER_LEFT,
CENTER_CENTER ,
CENTER_RIGHT,
BOTTOM_LEFT,
BOTTOM_CENTER ,
BOTTOM_RIGHT,

private:

std::string view_string;

int m_value;

bool m_draw_value;

bool m_border;

Color m_color;
ViewObjectLocation m_location;

public:

// Construct ViewObject.

public Object {

Label for walue (e.g.,
Value displayed (e.g.,
True if should draw value.
True if border around display.
Color for text (and border).
Location of ViewObject.

// Object settings: SPECTRAL, maz alt.

// ViewObject defaults:
ViewObject () ;

border,

// Draw view string and wvalue.
virtual int draw () override;

// Handle ‘view’ event

// Return 0 if ignored, else 1

top_center ,

if tag matches view_string (others
if handled .

default

color ,

ignored).

virtual int eventHandler (const Event *p_e) override;

// General location

of ViewObject on screen.

void setLocation(ViewDbjectLocation new_location) ;

// Get general location

of ViewObject on screen.

ViewObjectLocation getLocation () const;

// Set wview value.
void setValue (int new_value);

// Get view value.
int getValue () const;

// Set view border (true =
// Get view border (true =
bool getBorder () const;

// Set wview color.
void setColor (Color mnew_color);

display
void setBorder (bool new_border);

display

border) .

border).

"Points”).
points).

draw_value .

212

=A,

16
17

18

4.16. View Objects 213
// Get view color.
Color getColor () const;

// Set wview display string.
void setViewString (std::string new_view_string);

// Get view display string.
std::string getViewString () const;

// Set true to draw wvalue with display string.
void setDrawValue (bool new_draw_value = true);

// Get draw wvalue (true if draw wvalue with display string).
bool getDrawValue () const;

g

Listing 4.189 shows the ViewObject constructor. First, it makes Object settings ap-
propriate for a ViewObject. Specifically, it puts the Object at the highest altitude so it is
visible above any other game objects, makes the ViewObject spectral so it does not collide
with any other objects and sets its type to “ViewObject”. Second, the ViewObject-specific
settings are made, with a value of 0, a border being drawn, the location in the top center
of the screen and the default color. Lastly, the ViewObject registers for interest in a view
event, described in Section 4.16.1 on page 216.

Listing 4.189: ViewObject ViewObject/()
// Construct ViewObject.
// Object settings: SPECTRAL, max altitude .
// ViewObject defaults: border, top_center , default color, draw_value.
ViewObject ::ViewObject ()

// Initialize Object attributes.
setSolidness (SPECTRAL)
setAltitude (MAX_ALTITUDE)
setType (" ViewObject")

// Initialize ViewObject attributes.
setValue (0)

setDrawValue ()

setBorder (true)

setLocation (TOP_CENTER)

setColor (COLOR_DEFAULT)

// Register interest in view events.
registerInterest (VIEW_EVENT) // if Section 4.15 implemented.

Pseudo code for ViewObject setLocation() method is shown in Listing 4.190. Basi-
cally, the switch statement starting on line 4 determines the (x,y) location. Only the first 2
(of 9 total) entries of the statement are shown, with the missing pieces following the same
pattern. The y coordinate is at 1 if on the top of the window, or world manager.get-
View() .getVertical ()-1 if on the bottom.

The x coordinate is at 1/6th, 3/6th, and 5/6th the horizontal distance (world manager-
.getView() .getHorizontal()), depending on if it is left, right or center, respectively. The

“olle,

"\
\

NN NN
> w

~

4.16. View Objects 214

y_delta variable is used to adjust the vertical distance by -1 if the ViewObject is at the
top and does not have a border, and by +1 if the ViewObject is at the bottom and does
not have a border. On line 21, the position is actually shifted and on line 24 the position of
the ViewObject is moved to the new position. Note, as given, Listing 4.190 assumes new -
location is one of the nine valid locations whereas in actual code this should be checked
and no action should be taken if new_ location is invalid.

Listing 4.190: ViewObject setLocation()

// General location of ViewObject on screen.
ViewObject ::setLocation (ViewObjectLocation new_location)

// Set new position based on location .
switch (new_location)
case TOP_LEFT:
p-setXY(WorldManager getView () .getHorizontal () * 1/6, 1)
if getBorder () is false then
y_delta = -1
end if
break;
case TOP_CENTER:
p-setXY(WorldManager getView () .getHorizontal () * 3/6, 1)
if getBorder () is false then
y_delta = -1
end if
break;

end switch
// Shift, as needed, based on border.

p-setY(p.getY() + y_delta)

// Set position of object to new position .
setPosition (p)

// Set new location .
location = new_location

The corresponding ViewObject getLocation() is not shown, but should merely return
location.

ViewObject setBorder () does a bit more than just set border to the new value. As
shown in Listing 4.191, it also calls setLocation() since, if the border has changed, the
(x,y) location on the screen needs to be adjusted based on the new border value.

Listing 4.191: ViewObject setBorder()

// Set wview border (true = display border).
void ViewObject::setBorder (bool new_border)

if border != new_border then
border = new_border

// Reset location to account for border setting.
setLocation (getLocation ())

10

)

~

4.16. View Objects 215

end if

The ViewObject draw() method is shown in Listing 4.192. The first code block con-
structs the string to draw, created from the display string and the integer holding the
value. The second block of code actually draws the string, invoking the drawString()
(see Listing 4.84 on page 122) method from the DisplayManager, along with a border (if
appropriate). Note, since the ViewObject’s (x,y) location is in screen (or window) coordi-
nates, as opposed to game world coordinates like most Objects, the ViewObject position
needs to be translated to world coordinates via the utility function viewToWorld(). The
function viewToWorld() does the reverse translation as worldToView(), in Listing 4.157
on page 186.

Listing 4.192: ViewObject draw()

// Draw view string and value.
int ViewObject ::draw ()

// Display view_string + value.
if border is true then

temp_str = " " + getViewString () + " " + toString(value) + " "
else

temp_str = getViewString() + " " + toString(value)
end if

// Draw centered at position .
Vector pos = viewToWorld (getPosition ())
DisplayManager drawString(pos, temp_str , CENTER_JUSTIFIED,
getColor ())
if border is true then
// Draw box around display .

end if

The toString() function used in Listing 4.192 on line 5 and line 7 is a useful utility
function to put in utility.cpp. Basically, it creates a stringstream, adds a number to
it, and return a string with the new contents. The full function is shown in Listing 4.193.

Listing 4.193: Utility toString()

#include <sstream>
using std::stringstream;

// Convert int to a string , returning string.
std::string toString(int i) {

std::stringstream ss; // Create stringstream .
ss << ij; // Add number to stream.
return ss.str(); // Return string with contents of stream.

While thus far, view objects could be done entirely outside the engine in “game pro-
grammer” code space, there is one part of the engine that is aware of ViewObjects — the
WorldManager’s draw() method. The extension required of the WorldManager to support
views is shown in Listing 4.194. Without views, the draw() method checked each Object to

‘vﬁﬁ.,
-
L4 \\

4.16. View Objects 216

see if they intersect the visible screen (see Listing 4.159 on page 187). ViewObjects may fail
this check since their positions are relative to the screen, not the game world. So, instead,
after checking for intersection, a dynamic_cast is made to see if the Object is a ViewObject.
If so, it is drawn. In other words, all ViewObjects are drawn each game loop, regardless of
position.

Listing 4.194: WorldManager extensions to draw() to support ViewObjects

// Only draw if Object would be visible (intersects view).

if boxIntersectsBox (box, view) or // Object in view,
dynamic_cast <ViewObject *> (p_temp_o)) // or is ViewObject.
p_temp_o -> draw()

end if

Tip 22! Dynamic cast. Dynamic casts can be used to ensure that a type con-
version is valid. When a class is polymorphic (it is a derived class with a virtual
function), a dynamic cast to the derived class returns the address of the derived
object, which can be interpreted as true, otherwise it returns NULL, which can be
interpreted as false. For example, consider Listing ??7. In the first if-then, the
pointer p_o points to the base Object so the dynamic cast returns false. In the
second if-then, the pointer p_o points to the derived ViewObject so the dynamic
cast returns true. Note! A dynamic cast will fail if there is not at least one method
marked as virtual in the base class. Having at least one virtual method makes
the class polymorphic.

4.16.1 View Event

View events are used by game programmers to signal the change in a view value. For
example, if the player scored 10 points, say by destroying a Saucer, a view event would be
created, given a value of 10, and passed to all ViewObjects (using onEvent ()). Listing 4.195
provides the header file for the EventView class, derived from the Event class (Listing 4.51
on page 95). Remember, in the constructor of a ViewObject, the Object already registered
for interest in a VIEW_EVENT (see Listing 4.189 on page 213). VIEW_EVENT is defined in
Listing 4.195 on line 2.

Like many other Events, the EventView is mostly a container, holding a string (tag)
which is a label associated with a specific ViewObject, an integer (value) that is used
to modify the value in the ViewObject, and a boolean (delta) that determines whether
the value either adjusts the ViewObject value (if delta is true) or replaces it (if delta
is false). Methods are provided to get and set these values. The default constructor
assigns VIEW_EVENT, 0 and false to tag, value and delta, respectively, and an alternate
constructor is provided to create an EventView with attribute values specified.

‘«:’{.,

o o

4.16. View Objects 217

Listing 4.195: EventView.h

#include " Event.h”

const std::string VIEW_EVENT = "df::view”;
class EventView : public Event {
private:
std::string m_tag; // Tag to associate .
int m_value; // Value for wview.
bool m_delta; // True if change in wvalue, else replace wvalue.
public:

// Create view event with tag VIEW.EVENT, wvalue 0 and delta false.
EventView () ;

// Create view event with tag, value and delta as indicated.
EventView(std::string new_tag, int new_value, bool new_delta);

// Set tag to new tag.
void setTag(std::string new_tag);

// Get tag.
std::string getTag() const;

// Set wvalue to new wvalue.
void setValue (int new_value) ;

// Get value.
int getValue () const;

// Set delta to new delta.
void setDelta(bool new_delta) ;

// Get delta.
bool getDelta () const;
};

With EventView specified, the ViewObject eventHandler() can now be defined as
shown in Listing 4.196. The first if statement confirms that the event is a VIEW EVENT.
If so, line 7 needs to cast the generic Event pointer as an EventView pointer. This cast
could either be a dynamic_cast (i.e., dynamic_cast <const EventView *>) (as described
in Section 4.5.5.3, page 98) or a static_cast (i.e., static_cast <const EventView *>) —
the latter is a compile-time cast that performs conversions that are safe and well-defined,
and it can often be faster than other types of casts Remember, the EventView * used here
needs to be declared const, too, in order to match the incoming type for p_e. This const
restriction is to ensure the eventHandler () is not modifying the attributes of the Event.

An EventView is then be checked to see if its tag matches the view string associated with
this ViewObject — if so, this event was intended for this ViewObject. At that point, the two
options are for delta to indicate that the EventView value is to change the ViewObject’s
value by that amount (if true), or that the EventView value is to replace the ViewObject’s
value (if false). Either way, the event his handled and ok is returned at line 20. If line 27

-
» 0%
N,
.

"\
\

4.16. View Objects 218

is reached, the event was not handled so 0 is returned.?'.

Listing 4.196: ViewObject eventHandler()

// Handle ‘view’ events if tag matches view_string (others ignored).
// Return 0 if ignored, else 1 (ok) if handled.

int ViewObject ::eventHandler (const Event *p_e)

N =

s w

// See if this is ‘view’ event.
5 if p_e->getType() is VIEW_EVENT then

7 EventView *p_ve = p_e

9 // See if this event is meant for this object.
10 if p_ve -> getTag() is getViewString () then

12 if p_ve -> getDelta() then
setValue (getValue () + p_ve->getValue()) // Change in wvalue.

14 else

15 setValue (p_ve->getValue ()) // New value.
17 end if

19 // Event was handled , return ok.

20 return ok

22 end if

end if

// If here, event was not handled. Call parent eventHandler().
return error

NN NN
S w

~

An example helps illustrate the use of ViewObjects and EventViews. Say a game pro-
grammer wants to have points associated with player achievements in a game and have
the points displayed in the top right of the screen. The game programmer might use the
code in Listing 4.197 at the top to create the view object, before the game actually starts.
This code creates a ViewODbject, associates “points” with the object, initializes the value
to 0, positions it at the top right of the screen and makes it yellow. The ViewObject code
automatically registers the object for interest in view events.

To change the value of the points ViewObject, say when an enemy object is destroyed,
the game programmer places the second block of code (starting on line 8) into the enemy
object destructor. When the enemy object is destroyed and the destructor is called, an
EventView is created, intended for the points ViewObject, providing a value of 10 that will
be added to the ViewObject value, since delta, the last parameter, is true. The event is
given to the ViewObject (actually all ViewObjects, but only the “points” ViewObject will
react) via the onEvent () call in the WorldManager.

Listing 4.197: Using ViewObjects
0(// Before starting game. .. 1

2LTf the parent Object eventHandler() did any work, it should be called but in the case of the engine at
this point, it does not

s

Ye

5
s}

4.16. View Objects 219

df ::ViewObject *p_vo = new df::ViewObject; // Used for points.
p_vo -> setViewString (" Points");

p_-vo -> setValue (0);

p_vo -> setLocation (df::TOP_RIGHT) ;

p_vo -> setColor (df::COLOR_YELLOW) ;

// In destructor of enemy object ...
df : : EventView ev(’ Points”, 10, true);
df :: WorldManager onEvent (&ev) ;

4.16.2 Buttons (optional)

A common user interface option is the button, represented graphically on the screen and
selected with a mouse. Computer users and game players are familiar with buttons, using
them for all sorts of game-related input. Buttons can provide in-game input, for example
for casting a spell, or before the game starts, for example for choosing what character to
be.

For Dragonfly, the button is similar to a ViewObject in that it is drawn on top of the
rest of the game objects and does not interact with the game world. The button needs to
respond to the mouse, too, so that it can recognize when the mouse hovers over it and when
it has been clicked.

Listing 4.198 shows the Button class, derived from the ViewObject class. The Button
adds two attributes for colors — one for the Button color when the button is highlighted
(the mouse is over it) (highlight_color, and one to keep track of the default color when
the button is not highlighted (default_color). Methods to get and set these attributes are
provided. The constructor needs to set default attribute values and register for interest in
mouse events.

Listing 4.198: Button.h

class Button : public ViewObject {

private:
Color m_highlight_color; // Color when highlighted .
Color m_default_color; // Color when not highlighted .
public:
Button () ;

// Handle "mouse” events .
// Return 0 if tignored, else 1.
int eventHandler (const Event *p_e) override;

// Set highlight (when mouse over) color for Button.
void setHighlightColor (Color new_highlight_color);

// Get highlight (when mouse over) color for Button.
Color getHighlightColor () const;

// Set color of Button.

N

NN N NN
YOt AR W N =

N o= O

= W

4.16. View Objects 220

void setDefaultColor (Color new_default_color);

// Get color of Button
Color getDefaultColor () const;

// Return true if mouse over Button, else false.
bool mouseOverButton (const EventMouse *p_e) const;

// Called when Button clicked.
// Must be defined by derived class.
virtual void callback() = 0;

};

The mouseOverButton () method is a helper to facilitate the Button in changing between
the highlight (when the mouse moves over it) and default colors (when the mouse is not
over it). Its functionality is depicted in Listing 4.199. A pointer to EventMouse event
is a parameter, with the return type boolean as true if the mouse is inside the button,
otherwise false.

The first block of code creates a bounding box for the Button which is wide enough for
the string and adjusted for with width and height if the Button has borders (an attribute
of the parent ViewObject). The next block of code simply calls boxContainsPosition()
(see Listing 4.154 on page 183) using the newly constructed Box and the mouse’s position,
and returns the appropriate boolean.

Listing 4.199: Button mouseOverButton()

// Return true if mouse over Button, else false.
bool MouseOverButton ::mouseOverButton (const EventMouse *p_e) const

// Create Box for Bultton.
width = getViewString ().size ()

height = 1
if getBorder () then // if Button has border
width = width + 4 // box wider by 2 spaces and
height = height + 2 // boz taller by 2 rows of ——
end if

Vector corner (getPosition().getX() - width/2,
getPosition () .getY() - height/2)
Box b(corner, width, height)

// If mouse inside button box, return true, else false.
if boxContainsPosition (b, p_e -> getMousePosition ())
return true
else
return false

With that method in place, the eventHandler () method, shown in Listing 4.200, is
ready to handle mouse actions. Since the Button only handles mouse events, this is checked
at the start, and any non-mouse event is not handled (return 0).

Next, the mouse event is checked to see if the mouse is inside the Button using mouseOverButton().

If it is not, then the Button color is changed to the default and the method returns (having
still handled the event).

4.16. View Objects 221

If the mouse is inside the Button, the Button color is changed to the highlight color and
if the mouse action is CLICKED, then the Button callback() is invoked.

Remember, although not shown, the Event pointer p_e needs to be casted when used as
an EventMouse (see Section 4.5.5.3 on page 98).

Listing 4.200: Button eventHandler()

ol // Handle "mouse” events.
1| // Return 0 if ignored, else 1.
2| int Button::eventHandler (const Event *p_e)

| // Check if mouse event.

5 if p_e -> getType() is not MSE_EVENT then
6 return 0 // not handled

7 end if

of // Check if mouse over button .
10 if mouseOverButton (p_e) then

12 // Highlight on.
13 setColor (highlight_color)

15 // Check if clicked.
16 if p_e -> getMouseAction () is CLICKED then

18 // Invoke callback.
19 callback ()

21 end if

23 // Highlight off.
24 setColor (default_color)

26| // Event handled .
27 return 1

Lastly, note that the callback() method on line 30 of Listing 4.198 is declared as
pure virtual (=0) meaning callback() must be defined before Button can be used. This is
because there is really no generic behavior common for all buttons when clicked, but instead
the game programmer must implement the button-specific behavior wanted.

An example can help illustrate how the Button class can be used. Consider a typical
start screen in a game, such as the start screen for Saucer Shoot in Section 3.3.11 on page 39,
where the player can choose to either “play” or “quit”. A quit button can be made as in
Listings 4.202 (header file) and 4.201 (code). In the header file, QuitButton is derived from
Button. The only method that must be defined is callback(), but in this case there is a
default constructor since some Button defaults are changed (such as the button text).

Listing 4.201: QuitButton.h — Example Quit button for game start screen

ol #include " Button.h”

1
2| class QuitButton : public df::Button {
3
| public:

s

Ye

5
s

5
6

7

4.16. View Objects 222

QuitButton () ;
void callback () ;
g

In the source code (Listing 4.201), the constructor sets the text displayed in the button to
“quit” and places the button in the bottom center of the screen. Other options could include
changing the button’s color(s) and the presence of a border. The callback() method is
invoked when the button is clicked. In this case, it sets game over to true, which causes the
game loop to exit and the game engine to shutdown (see Section 4.4.4 on page 71).

Listing 4.202: QuitButton.cpp — Example Quit button for game start screen

#include " GameManager.h"
#include " QuitButton .h”

QuitButton::QuitButton () {
setViewString (" Quit");
setLocation (df : : BOTTOM_CENTER) ;

}

// On callback , set game over to tlrue.
void QuitButton::callback () {
GM.setGameOver() ;

4.16.3 Text Entry (optional)

Another common user interface option is the text entry widget, typically represented as a
blank box that allows players to type in a string. Text entry is sometimes used for in-game
options, such as typing in an action for a classic text adventure, but more often for extra-
game options, such as entering the network address of a server in a multi-player game or
typing in player initials in a high score table.

Like buttons, text entry widgets are presented to the player above the rest of the game
objects and do not interact with the game world, like the Dragonfly ViewObject. Unlike
the Button, the text entry widget does not need a mouse, but does need to respond to
keyboard input as keys are pressed.

Listing 4.203 shows the TextEntry class, derived from the ViewObject class. TextEntry
adds three attributes related to the text — text for the text characters, 1imit to limit how
many characters can be entered and numbers_only, a boolean that if true, indicates that
only numbers are accepted. Methods to get and set these attributes are provided. The
constructor needs to set default attribute values and register for interest in keyboard events
and step events (the latter to handle blinking the cursor). The text attribute needs to be
initialized with all spaces (up to length 1imit) so that the text entry box is drawn properly
— this is done in setLimit (), in case the game programmer changes the limit.

Listing 4.203: TextEntry.h

ol // Engine includes.
1| #include " EventMouse.h”
2| #include " ViewObject .h”

3
1

class TextEntry : public ViewObject {

s

Ye

5
s

4.16. View Objects

private:
std::string m_text;

223

Text entered .

int m_limit; // Character limit in text.
bool m_numbers_only; // True if only numbers.
int m_cursor; // Cursor location .

char m_cursor_char; // Cursor character.

int m_blink_rate;

public:
TextEntry () ;

// Set text entered.
void setText (std::string new_text);

// Get text entered.
std::string getText () const;

// Handle "keyboard” events.
// Return 0 if ignored, else 1.

Cursor blink rate.

int eventHandler (const Event *p_e) override;

// Called when TextEntry enter hit.
// Must be defined by derived
virtual void callback () 0;

// Set limit of number of characters
void setlimit (int new_limit);

class .

// Get limit of number of characters
int getLimit () const;

// Set cursor to location .

void setCursor (int new_cursor) ;

// Get cursor location .
int getCursor () const;

allowed .

allowed .

// Set blink rate for cursor (in ticks).
void setBlinkRate (int new_blink_rate);

// Get blink rate for cursor (in ticks).

int getBlinkRate () const;

// Return true if

bool numbersOnly () const;

only numbers can be

entered .

// Set to allow only numbers to be entered.

void setNumbersOnly (bool new_numbers_only =

// Set cursor character.

true) ;

void setCursorChar (char new_cursor_char);

// Get cursor character.
char getCursorChar () const;

=A,

60
61

62

4.16. View Objects 224

// Draw viewstring + text entered.
virtual int draw () override;

63 };

The callback () method on line 29 is as for the Button class — declared as pure virtual
(=0) meaning callback() must be defined before TextEntry can be used. As for a Button,
the text entry specific behavior wanted must be implemented by the game programmer.

Most of the methods are implemented in a straightforward manner, with the exception
of the eventHandler (), shown in Listing 4.204.

If the event is a step event, the code block from lines 7 to 17 handles the cursor blinking
—the cursor in this case, is a character that toggles between an underscore (or whatever the
cursor character is set to) and a space. The method uses a static variable to keep track of
the blink count, counting up from a negative value. When the count passes zero, it toggles
the cursor (blinks it).

Listing 4.204: TextEntry eventHandler()

// Handle "keyboard” events.
// Return 0 if ignored, else 1.
int TextEntry::eventHandler (const Event *p_e)

// If step event, blink cursor.
if p_e -> getType() is df::STEP_EVENT then

// Blink on or off based on rate.
static int blink = -1 * getBlinkRate ()
if blink >= 0 then
text.replace(cursor, 1, 1, getCursorChar ())

else
text.replace(cursor, 1, 1, ' ')

end if

blink = blink + 1

if blink == getBlinkRate () then
blink = -1 * getBlinkRate ()

end if

return 1

end if

// If keyboard event, handle.
if p_e -> getType() is KEYBOARD_EVENT and
p_e -> getKeyboardAction () is KEY_PRESSED then

// If return key pressed, then callback.

if p_e -> getKey() is Keyboard::RETURN then
callback ()
return 1

end if

// If backspace, remove character.
if p_e -> getKey() is Keyboard::BACKSPACE then
if cursor > O then

64
65

66

4.16. View Objects 225

if cursor < 1limit then
text .replace(cursor, 1, 1, ' ')
end if
cursor = cursor - 1
text.replace(cursor, 1, 1, ' ')
end if
return 1
end if

// If no room, cannot add characters .
if cursor >= limit then

return 1
end if

// Get key as string.
std::string str = toString(p_k -> getKey())

// If entry should be number, confirm.

if numbers_only && not isdigit (str [0]) then
return 1

end if

// Replace spaces with characters.
text.replace (cursor, 1, str)
cursor++

// All is well.
return 1
end if

// If we get here, event is not handled.
return 0

If the event is a keyboard event, there are several possible actions. Remember, although
not shown, the Event pointer p_e needs to be casted when used as an EventKeyboard (see
Section 4.5.5.3 on page 98).

The code starting on Line 27 checks if the return key is pressed. If so, the callback()
method is invoked.

The code starting on Line 33 checks if the backspace key is pressed. If so, there is
an additional check if the cursor is at the beginning of the string. If not, the character
immediately to the left of the cursor is replaced.

The code on Line 45 makes sure that there is still room to add more text. If not (the
limit is reached) the method ends.

Otherwise, the code at the bottom of the method adds the keyboard character pressed
by replacing the space in the string at cursor with the character pressed.

The TextEntry draw() method also has a bit of work to do beyond the ViewObject
draw() method. The required logic is shown in Listing 4.205. Basically, the original
ViewObject text (set to “Enter text:” or something similar in the child class construc-
tor) is loaded, the text entered so far is added, and then drawn.

Listing 4.205: TextEntry draw()

s

Ye

5
s

)

N =

Gl W

6

4.16. View Objects 226

// Draw viewstring + text entered.
int TextEntry::draw()

// Get original view string.
std::string view_str = getViewString ()

// Add text.
setViewString (view_str + text)

// Draw.

ViewObject ::draw ()

// Restore original view string.
setViewString (view_str)

An example can help illustrate how the TextEntry class can be used. Consider a high
score table where the player, upon hitting a score worthy of the table, is asked to enter
his/her initials (3 characters). A text entry widget can be made as in Listings 4.206 (header
file) and 4.207 (code). In the header file, NameEntry is derived from TextEntry. The only
method that must be defined is callback(), but in this case the limit (3 characters) needs
to be set, too.

Listing 4.206: NameEntry.h — Example TextEntry for player initials

#include " TextEntry.h”
class NameEntry : public df::TextEntry {

public:
NameEntryButton () ;
void callback ();
i

In the source code, the constructor sets the text entry widget in the center of the
screen and indicates the player should enter initials (setting the character limit to 3). The
callback() method is invoked when the return key is pressed — in this case, a message is
written to the logfile, but probably the game programmer would do something else with the
initials, such as add them to a table.

Listing 4.207: NameEntry.cpp — Example TextEntry for player initials

#include "LogManager.h”
#include " NameEntry.h"

NameEntry::NameEntry () {
setViewString (" Enter initials”);
setLocation (df : : CENTER_CENTER) ;
setLimit (3);

}

// On callback , write initials to logfile.
void QuitButton::callback () {

LM.writeLog (" High score: %s”, getText().c_str());
}

s

Ye

5
s}

4.16. View Objects 227

4.16.4 Development Checkpoint #13!

Continue development of Dragonfly, incorporating ViewObjects. Steps:

1.

Create a ViewObject class (ViewObject.h and ViewObject.cpp), inheriting from
Object, based on Listing 4.188. Add ViewObject.cpp to the project. Stub out all
the methods first and get it to compile.

. Write the ViewObject constructor, based on Listing 4.189 and then setLocation(),

based on Listing 4.190. Get your code to compile and verify by visual inspection of
code.

. Based on Listing 4.193, write the utility function toString() and put it inutility.cpp

and utility.h. Test with a stand alone program, outside of any other aspect of the
game engine, to be sure it properly converts a range of integers to string values.

. Write the ViewObject draw() method, referring to Listing 4.192. Remember, since

draw() gets called automatically in WorldManager draw(), first test your code by
creating a ViewObject (via new) before calling the GameManager run() method.
Verify that the ViewObject appears, testing its location in all six fixed locations
around the screen, for arbitrary strings and values.

. Create a EventView class, based on Listing 4.195. Add EventView.cpp to the project.

Define the eventHandler () based on Listing 4.196. Verify the code compiles and use
visual inspection on the methods.

Referring to Listing 4.197, construct an example that uses a ViewObject with a test
program that changes the value of the object. Test with a variety of view events, with
different values and deltas. Verify that a ViewObject only handles events that are
targeted toward it, ignoring others.

s

Ye

5
s

4.17. End Game (optional) 228

4.17 End Game (optional)

Up to this point, Dragonfly is a fairly full-featured, completely functional game engine. A
few potential enhancements remain, however, that bring in elements common to many game
engines and improve performance, appearance and functionality.

4.17.1 Scene Graphs (optional)

Scene graphs are data structures that arrange elements of a graphics scene in order to
provide more efficient rendering. For example, when drawing objects in a 3d scene, a scene
graph might arrange the objects based on distance from the camera. Rendering the frame
then draws the objects that are farthest away from the camera first, proceeding to the
objects that are closest to the camera since the closer objects may occlude those behind.

Consider Dragonfly, where Objects have altitude (see Section 4.8.5 on page 122). Ob-
jects that are at lower altitude are drawn first before Objects at higher altitude, allowing
the higher altitude to be layered “on top” of the lower ones, as necessary. Without a scene
graph, Dragonfly implements altitude by iterating through all the Objects for each altitude
implementation, as in Listing 4.86 on page 123 — effectively, doing nx MAX_ALTITUDE com-
parisons, where n is the number of Objects in the game world. With a scene graph, the
objects can be arranged by altitude, making the WorldManager draw() method only go
through the list of Objects once, so only doing n comparisons.

For a game engine, a scene graph often arranges objects for more efficient queries,
also. Objects that are not solid do not cause collisions. Without any other organization,
detecting whether a moving object collides with any other object must look through all
objects, regardless of whether they are solid or not. Thus far, Dragonfly is implemented
this way, too, as in Listing 4.108 (page 146), iterating through all Objects, checking for
collision with every Object, even the non-solid ones. Other common organizations group
Objects by location in the game world, allowing selection and iteration over only those
Objects at or near a specific location.

Since a scene graph organizes Objects, whether for drawing or query efficiency, it is
naturally part of the WorldManager. In fact, an easy way of viewing a scene graph is that
it replaces a simple list of game Objects with a more complex data structure where the
Objects are organized and indexed in different ways. In Dragonfly, this means replacing
ObjectList m updates on line 10 of Listing 4.57 (page 100) with SceneGraph scene_-
graph.

The header file for SceneGraph is shown in Listing 4.208. SceneGraph needs to #include
both Object.h and ObjectList.h. The definition of MAX_ALTITUDE on line 3 has been
moved from WorldManager.h to SceneGraph.h.

To support efficient queries by the WorldManager (e.g., to provide a list of all the solid
objects), starting at line 8, the SceneGraph defines three lists of Objects. The first, objects,
is a list of all the Objects in the game — formerly, this was m_updates in the WorldManager.
The second, solid_objects, is a list of just the solid Objects in the game. The third,
visible objects, is an array of ObjectLists, with each element being a list of Objects
at that altitude. Methods to add and remove objects to the scene graph are provided by
insertObject () and removeObject (), respectively.

s

Ye

5
s

16
17
18

19

NN NN N
A W N = O

)
N O

NN

4.17. End Game (optional) 229

To support queries that may be made by the WorldManager (or even the game program-
mer), SceneGraph includes methods: activeObjects(), which returns all active Objects;
inactiveObjects (), which returns all inactive Objects; solid0Objects (), which returns
all solid Objects; and visibleObjects(), which returns all visible Objects at a given al-
titude. The methods all return an empty ObjectList if there are no Objects matching the
query. The method updateAltitude() is invoked when an Object re-positions itself to a
new altitude and the method updateSolidness() is invoked when an Object updates its
solidness.

Listing 4.208: SceneGraph.h

#include " Object.h”
#include " ObjectList.h”

const int MAX_ALTITUDE = 4;

class SceneGraph {

private:
ObjectList m_objects; // All Objects
ObjectList m_solid_objects; // Solid objects.

ObjectList m_visible_objects [MAX_ALTITUDE+1]l; // Visible objects.

public:
SceneGraph () ;
~“SceneGraph () ;

// Insert Object into SceneGraph .
int insertObject (Object *p_o);

// Remove Object from SceneGraph .
int removeObject (Object *p_o);

// Return all active Objects. Empty list if mnone.
ObjectList activeObjects () const;

// Return all active, solid Objects. Empty list if none.
ObjectList solidObjects () const;

// Return all active, wvisible Objects at altitude. Empty list if none.
ObjectList visibleObjects (int altitude) const;

// Return all inactive Objects. Empty list if none.
ObjectList inactiveObjects () const;

// Re—position Object in SceneGraph to new altitude.
// Return 0 if ok, else —1.
int updateAltitude (Object *p_o, int new_alt);

// Re—position Object in SceneGraph to new solidness .
// Return 0 if ok, else —1.
int updateSolidness (Object *p_o, Solidness new_solidness);

// Re—position Object in SceneGraph to new wvisibility .
// Return 0 if ok, else —1.

4.17. End Game (optional) 230

44 int updateVisible (Object *p_vo, bool new_visible);

15

16 // Re—position Object in SceneGraph to new activeness.
a7l // Return 0 if ok, else —1.

18 int updateActive (Object *p_o, bool new_active);

9| F;

Implementation of SceneGraph insertObject () is shown in Listing 4.209. The method
first inserts the Object into the objects list, since that is the “master” list that contains
all Objects. Then, if the Object is solid, it is added to the solid objects list. Next, the
Object’s altitude is checked — if it is not in range (calling valueInRange(altitude, O,
MAX_ALTITUDE), see line 1 in Listing 4.154 on page 183), it returns an error (-1). Otherwise,
the object is inserted into the visible objects list at the correct altitude. Note, the
calls to ObjectList: :insert() need to be error checked. If they encounter an error, an
appropriate message should be written to the logfile and insertObject () should return -1.

While it may seem that keeping 3 object lists is inefficient, remember that game objects
are stored as pointers to Objects, thus manipulating and copying such lists is not actually
doing the much more expensive operation of copying the memory space for each Object. As
a refresher, see Section 4.5.2 on page 4.5.2 for details on the ObjectList implementation.

Listing 4.209: SceneGraph insertObject()

// Insert Object into SceneGraph .
1| int SceneGraph::insertObject (Object *p_o)
2

// Add object to list.

4 insert p_o into objects list

6 // If solid, add to solid objects list.
7 if p_o -> isSolid () then

8 insert p_o into solid_objects 1list

9 end if

11 // Check altitude.

12 if not valueInRange (p_o->getAltitude (), O, MAX_ALTITUDE) then
13 return error

14 end if

16| // Add to wvisible objects at right altitude.
17 insert p_o into visible_objects [p_o->getAltitude ()] 1list

Implementation of the SceneGraph removeObject() is basically the “undo” of the
insertObject () method, as shown in Listing 4.210. The indicated Object (p-o) is re-
moved from the objects, solid objects and visible objects lists. As always, the calls
to ObjectList: :remove () need to be error checked, writing an appropriate message to the
logfile and returning -1 on encountering an error.

Listing 4.210: SceneGraph removeObject|()

ol // Remove Object from SceneGraph .
1| int SceneGraph::removeObject (Object *p_o)
2

remove p_o from objects list

s

Ye

5
s}

4.17. End Game (optional) 231

if p_o is solid then
remove p_o from solid_objects 1list
end if

remove p_o from visible_objects [p_o->getAltitude ()] 1list

if no errors then // means no errors in any of the above
return ok

else
return error

end if

The methods allObjects() and solidObjects() just return objects and solid -
objects, respectively. visibleObjects() first checks that the parameter altitude is in
range (calling valueInRange(altitude, 0, MAX_ALTITUDE), see line 1 in Listing 4.154 on
page 183), then returns visible objects[altitude].

Objects may change their attributes, such as a SPECTRAL Object becoming SOFT or an
Object changing altitude from 3 to 4. All such changes need to modify the contents of
the SceneGraph lists, solid objects and visible objects[], respectively. Listing 4.211
shows the implementation for updating the solidness of an Object. The first block of code
checks if the Object is solid and, if so, removes it from the solid objects list. The second
block of code checks if the new solidness value for the Object is solid (HARD or SOFT) and,
if so, inserts it into the solid_objects list. Error checking on the ObjectList: :insert ()
calls is needed, as usual. Note, the solidness attribute for the Object is not changed — that
is a private value for Object and is done in the Object setSolidness () method.

Listing 4.211: SceneGraph updateSolidness|()

// Re—position Object in SceneGraph to new solidness.
// Return 0 if ok, else —1.

int SceneGraph::updateSolidness (Object *p_o, Solidness new_solidness)

// If was solid, remove from solid objects list.
if p_o->isSo0lid () then

remove p_o from solid_objects list
end if

// If is solid, add to list.

if new_solidness is HARD or new_solidness is SOFT then
insert p_o into solid_objects 1list

end if

/) All is well.
return ok

Listing 4.212 shows the implementation for updating the altitude of an Object. First,
the altitude values for both the new and old altitudes are checked for validity. It may seem
odd to check the old value, since it seems it must be right, but it could have been corrupted
someplace — if it was, trying to remove the Object from the visible objects[] list at the
altitude may result in a crash. If both old and new are in the valid range, the Object is first
removed from visible objects[] at the old altitude, then added to visible objects[]

-
"ﬁ?,‘
.
* 0\

4.17. End Game (optional) 232

at the new altitude. Error checking on the ObjectList::insert() calls are needed, as
usual.

Listing 4.212: SceneGraph updateAltitude()

// Re—position Object in scene graph to new altitude .
// Return 0 if ok, else —1.
int SceneGraph::updateAltitude (Object *p_o, int new_alt)

// Check if new altitude in valid range.

if not valueInRange (new_alt, O, MAX_ALTITUDE) then
return error

end if

// Make sure old altitude in wvalid range.

if not valueInRange (p_o->getAltitude (), O, MAX_ALTITUDE)) then
return error

end if

// Remove from old altitude.
remove p_o from visible_objects [p_o->getAltitude ()]

// Add to new altitude.

insert p_o into visible_objects [new_alt]

// All is well.

return ok

Calls to updateSolidness () and UpdateAltitude () are made from Object, specifically
Object setSolidness() and Object setAltitude(), respectively. The needed extension
to Object setSolidness() to support SceneGraph is shown in Listing 4.213. The first
block of code checks if the new solidness is valid (HARD, SOFT or SPECTRAL). If not, an error
is returned. Otherwise, the updateSolidness() method of the SceneGraph is called and
solidness is set in the Object.

Listing 4.213: Object class extension to setSolidness() to support SceneGraph

// Set object solidness, with checks for consistency .
// Return 0 if ok, else —1.
int Object::setSolidness (Solidness new_solidness)

// If solidness not walid, then ignore.

if new_solidness not (HARD or SOFT or SPECTRAL) then
return error

end if

// Update scene graph and solidness.
scene_graph.updateSolidness(this, new_solidness)
solidness = new_solidness

/) All is well.
return ok

Extension to Object setAltitude () to support SceneGraphs is shown in Listing 4.214.
The first block of code checks if the new altitude is in a valid range. If not, an error is

-

» 0%
e,
.

"\
\

4.17. End Game (optional) 233

returned. Otherwise, the SceneGraph updateAltitude() method is called and altitude
is set in the Object.

Listing 4.214: Object class extension to setAltitude() support SceneGraphs

// Set Object altitude.

// Checks for in range [0, MAXALTITUDE].
// Return 0 if ok, else —1.

int Object::setAltitude (int new_altitude)

// If altitude outside of range, then ignore.

if not valueInRange (new_altitude, 0, MAX_ALTITUDE) then
return error

end if

// Update scene graph and altitude.
scene_graph .updateAltitude (this, new_altitude)
altitude = new_altitude

// All is well.

return ok

With the SceneGraph in place, the Dragonfly WorldManager needs to be refactored
to use the SceneGraph to manage game world Objects instead of storing the ObjectLists
directly. Listing 4.215 shows the change in the WorldManager needed to use a SceneGraph.
Basically, the attribute ObjectList m_updates is replaced with SceneGraph scene_graph.
The method getSceneGraph() returns a reference to scene_graph.

Listing 4.215: WorldManager extensions to support SceneGraph

private:
SceneGraph scene_graph; // Storage for all Objects.

public:
// Return reference to the SceneGraph .
SceneGraph &getSceneGraph () const;

Then, internally, each of the WorldManager methods in Listing 4.216 needs to be refac-
tored to support the SceneGraph. The methods insertObject() and removeObject()
call and return scene_graph.insertObject() and scene_graph.removeObject (), respec-
tively. The methods update () and setViewFollowing() call scene_graph.allObjects()
to iterate through all the world Objects. The method draw() iterates through each altitude,
calling scene_graph.visibleObjects() for each altitude. The method getCollisions()
checks for collisions only with Objects in the ObjectList returned from scene_graph-
.solid0Objects().

Listing 4.216: WorldManager methods to refactor to support SceneGraph

ObjectList getAllObjects ()

int insertObject (Object *p_o)

int removeObject (Object *p_o)

int setViewFollowing (Object *p_new_view_following)

void update ()

void draw ()

ObjectList getCollisions (const Object *p_o, Vector where)

B W N = O

4.17. End Game (optional) 234

4.17.1.1 Inactive Objects (optional)

For many games, it is useful for the game program to have some game objects be ignored by
the engine for some time, but without removing the objects from the game world altogether.
For example, the Saucer Shoot tutorial game (Section 3.3.11 on page 39) has the main menu
become inactive when the game is being played, becoming active again after the player’s
ship has been destroyed. Such inactive objects are not drawn by the engine, are neither
moved nor considered in collisions, nor do they receive any events.

In order to support inactive Objects in Dragonfly, the Object class is extended with
an attribute and methods to support whether an Object is active or inactive, shown in
Listing 4.217. The boolean attribute is_active is true when the Object is active (note, all
the Objects that have been dealt with to this point are active) and false when the Object
is inactive and not acted upon by the engine. This value can be set via the setActive ()
method and queried via the isActive () method.

Listing 4.217: Object class extensions to support inactive objects

private:
bool is_active; // If false, Object not acted wupon.

public:

// Set activeness of Object. Objects not active are not acted upon
// by engine.

// Return 0 if ok, else —1.

int setActive (bool active=true);

// Return activeness of Object. Objects not active are not acted upon
// by engine.
bool isActive () const;

As shown in Listing 4.218, the method setActive () allows the game programmer to set
the Object activeness, changing is_active as appropriate. Objects are active (is_active
is true) by default, set in the constructor. In addition, the SceneGraph is obtained from
the WorldManager and the SceneGraph updateActive () method is called.

Listing 4.218: Object setActive()
// Set activeness of Object. Objects not active are not acted upon
// by engine.
// Return 0 if ok, else —1.
int Object::setActive (bool active)

// Update scene graph.
scene_graph = WorldManager getSceneGraph ()
scene_graph .updateActive (this, active)

// Set active value.
is_active = active

The SceneGraph is refactored to have an additional ObjectList, one that holds only
inactive Objects while the main object list will hold active Objects. Listing 4.219 shows the
changes to the SceneGraph attributes for this. The objects ObjectList has been renamed

-
‘Oﬁﬁ,‘
°
* 0\

4.17. End Game (optional) 235

to active_objects to differentiate it from the ObjectList holding the inactive objects,
inactive_objects.

Listing 4.219: SceneGraph extensions to support inactive Objects

private:
ObjectList active_objects; // All active Objects.
ObjectList inactive_objects; // All inactive Objects.
public:

// Return all active Objects. Empty list if mnone.
ObjectList activeObjects () const;

// Return all inactive Objects. Empty list if none.
ObjectList inactiveObjects () const;

// Re—position Object in SceneGraph to new activeness.
// Return 0 if ok, else —1.

int updateActive (Object *p_o, bool new_active);

The methods activeObjects() and inactiveObjects() return active_objects and
inactive_objects, respectively.

Listing 4.220 shows the SceneGraph updateActive () method. The first block of code
checks if the activeness is being changed. If not, there is nothing more to do and an
“ok” (0) is returned. The second block of code does the actual work. If the Object was
active and became inactive, remove () is called on active_objects, visible_objects[]
and, if solid, solid_objects and the Object is inserted into the inactive_objects list.
Otherwise, if the Object was inactive and became inactive, insert () is called on active_-
objects, visible objects[] and, if solid, solid_objects and the Object is removed from
the inactive_objects list. All method calls should be error checked and an error (-1)
returned, as appropriate. Otherwise, “ok” is returned at the end.

Listing 4.220: SceneGraph updateActive()

// Re—position Object in SceneGraph to new activeness.
// Return 0 if ok, else —1.
int SceneGraph::updateActive (Object *p_o, bool new_active)

// If activeness wunchanged, nothing to do (but ok).
if p_o->isActive() is new_active then

return ok
end if

// If was active then now inactive, so remove from lists.
if p_o->isActive () then

active_objects .remove(p_o)
visible_objects [p_o->getAltitude ()].remove(p_o)
if p_o->isSo0lid () then

solid_objects .remove(p_o)
end if

4.17. End Game (optional) 236

N

// Add to inactive list
inactive_objects .insert (p_o)

else // Was active, so add to lists.

NN N NN

active_objects .insert(p_o)

YOt AR W N =

)

1

V)

visible_objects [p_o->getAltitude ()].insert(p_o)

NN
© ®

if p_o->isSo0lid () then
30 solid_objects .insert(p_o)
31 end if

33 // Remove from inactive list
34 inactive_objects .remove (p_o)

36 end if

38| // All is well.
39 return ok

The WorldManager getAllObjects() method is refactored, as in Listing 4.221. A
boolean parameter inactive is provided to indicate whether the method should return
only active Objects (inactive is false, the default) or both active and inactive Objects
(inactive is true).

Listing 4.221: WorldManager extensions to support inactive Objects

ol // Return list of all Objects in world.

// If inactive is true, include inactive Objects.
// Return NULL if list is empty.

ObjectList getAllObjects (bool inactive=false);

W e

The revised getAl10bjects() is shown in Listing 4.222. The inactive case can use the
overloaded ‘+’ operator from Section 4.5.2.2 (page 85).

Listing 4.222: WorldManager extensions to getAllObjects() to support inactive Objects

ol // Return list of all Objects in world.

1| // If inactive is true, include inactive Objects.

2| // Return NULL if list is empty.

3| ObjectList WorldManager ::getAllObjects (bool inactive) const

4

5 if inactive then

6 return scene_graph.activeObjects () + scene_graph.inactiveObjects ()
7 else

8 return scene_graph.activeObjects ()

9 end if

The Manager onEvent () method needs to be modified to check if an interested Object
is actually active before sending it an event. This is shown on line 2 of Listing 4.223.

Listing 4.223: Manager extension to onEvent() to support inactive Objects

1 for j = 0 to object_list[i]

4.17. End Game (optional) 237

2 if object_list [i]1[j] -> isActive () then
3 call object_list[i][j] -> eventHandler () with p_event
1 end if

5 end for

Lastly, WorldManager shutDown() should be revised to call getA110bjects(true) to
delete both active and inactive Objects when the engine is shut down.

4.17.1.2 Invisible Objects (optional)

Another useful property for many game objects is to become invisible. For a game object,
invisibility could be a special power, say, for the hero or a bad guy to vanish from sight —
but as such, it is rather rare. However, invisibility is commonly used to limit the player’s
ability to see objects that may be on the window, but should not yet be shown to the player
because of the player’s avatar’s orientation, or because of terrain or other “fog of war” type
of effect. From a game engine perspective, an invisible game object is not drawn, but is
still updated each game loop and can be collided with, if solid, as appropriate.

To support invisibility, a new attribute is added to Object with methods for getting
and setting it, shown in Listing 4.224. The method isVisible() returns the value of
is_visible.

Listing 4.224: Object class extensions to support invisibility

0| private:
1 bool is_visible; // If true, object gets drawn.

public:
| // Set wvisitbility of Object. Objects not wvisible are not drawn.
5 // Return 0 if ok, else —1.

6 int setVisible (bool visible=true) ;

8 // Return wvisibility of Object. Objects not wvisible are not drawn.
9 bool isVisible () const;

As shown in Listing 4.225, the method setVisible () allows the game programmer to set
the Object visibility, changing is_visible as appropriate. Objects are visible (is_visible
is true) by default. In addition, the SceneGraph is obtained from the WorldManager and
the SceneGraph updateVisible () method is called.

Listing 4.225: Object setVisible()
ol // Set wisibility of Object. Objects not visible are not drawn.
1| // Return 0 if ok, else —1.
2| int Object::setVisible (bool visible)

| // Update scene graph.
5 scene_graph = WorldManager getSceneGraph ()
6 scene_graph .updateVisible (this, visible)

sl // Set wisibility wvalue.
9 is_visible = visible

s

Ye

5
s}

4.17. End Game (optional) 238

Listing 4.226 shows the SceneGraph updateVisible () method. The first block of code
checks if the visibility is being changed. If not, there is nothing more to do and an “ok”
(0) is returned. The second block of code does the actual work. If the Object was visible
and went invisible, remove () is called on the ObjectList, otherwise insert () is called, at
the right altitude (p-o->getAltitude()). All method calls should be error checked and an
error (-1) returned, as appropriate. Otherwise, “ok” is returned at the end.

Listing 4.226: SceneGraph updateVisible()

// Re—position Object in scene graph based on wvisibility .
// Return 0 if ok, else —1.
int SceneGraph::updateVisible (Object *p_o, bool new_visible)

// If wisibility unchanged, nothing to do (but ok).
if p_o->isVisible () is new_visible then

return ok
end if

// If was wvisible then now invisible , so remove from list.
if p_o->isVisible () then
visible_objects [p_o->getAltitude ()].remove(p_o)
else // Was invisible , so add to list.
visible_objects [p_o->getAltitude ()].insert(p_o)
end if

// All is well.

return ok

4.17.2 Development Checkpoint #14!

To develop the SceneGraph for Dragonfly, use the following steps:

1. Create the SceneGraph class, referring to Listing 4.208 as needed. Add SceneGraph. cpp
to the project and stub out each method so the SceneGraph compiles.

2. Implement the SceneGraph insert0Object () and removeObject () methods based on
Listing 4.209 and Listing 4.210, respectively. Test outside of the game engine by
adding and removing Objects.

3. Implement the SceneGraph updateSolidness() method, based on Listing 4.211 and
updateAltitude(), based on Listing 4.212.

4. Extend the Object class setSolidness () to support a SceneGraph, referring to List-
ing 4.213. Do the same for setAltitude (), referring to Listing 4.214.

5. Extend the WorldManager to support a SceneGraph, as in Listing 4.215. Refactor
the methods shown in Listing 4.216, as appropriate.

6. Test by verifying that previous code that worked without SceneGraphs still works,
such as test code from the last development checkpoint (on page 227).

If support for inactive Objects is desired (optional), continue development:

s

Ye

5
s

4.17. End Game (optional) 239

1. Extend Object to support activeness based on Listing 4.217, implementing setActive ()
based on Listing 4.218.

2. Refactor the SceneGraph based on Listing 4.219, implementing updateActive () based
on Listing 4.220.

3. Refactor the WorldManager based on Listing 4.221, extending getAl1l0bjects() ()
to return inactive Objects, too, based on Listing 4.222.

4. Test with game code that sets another game object to inactive and back, say, based
upon key presses.

If support for invisibility is desired (optional), continue development:

1. Extend Object to support invisibility based on Listing 4.224.

2. Implement Object setVisible() based on Listing 4.225 and SceneGraph update-
Visible(), based on Listing 4.226.

3. Test with game code that has game objects set themselves to invisible and back, say,
depending upon key presses or positions on the screen.

s

Ye

5
s

4.17. End Game (optional) 240

4.17.3 Gracefully Shutting Down (optional)

As of now, the game programmer needs to provide the mechanism for the player to exit
the game and terminate the engine.. For example, in Saucer Shoot (Chapter 3, the player
can press ‘Q’ to exit. However, it can be useful for the player (and the developer) to allow
standard method of closing windows to work with Dragonfly, also.

4.17.3.1 Closing the Game Window (optional)

In many cases, a user will close an application window by clicking on the “close” button,
typically a button with a ‘x’ in the upper right corner of the window border. However, up
until this point, the Dragonfly window opened by the DisplayManager does not provide for
a close button. However, SFML does support both providing and handling a windows close
button, so Dragonfly can be extended to support the same.

In order to provide support for the close button, first, in DisplayManager.h WINDOW -
STYLE DEFAULT is modified to also include sf: : Style: :Close bitwise or-ed with the Title-
bar. In other words, WINDOW_STYLE DEFAULT should look like:

u[const int WINDOW_STYLE_DEFAULT = sf::Style::Titlebar|sf::Style::Close;]

This provides a close button in the SFML game window that a user can click. When the
user does so, this sends a sf::Event::Closed event to the window that can be detected
along with other keyboard and mouse input in the InputManager. Needed extensions to the
InputManager getInput () are shown in Listing 4.227. Basically, within the while (event)
loop, the event type sf::Event::Closed is looked for (in addition to the keyboard and
mouse events — see Listing 4.94 on page 131). If it is found, Dragonfly is shut down by calling
GameManager setGameOver (). The header file GameManager.h needs to be #included.

Listing 4.227: InputManager extensions to getInput() to window close

// Get input from the keyboard and mouse.
// Pass event along to all Objects.
void InputManager ::getInput () const

// Check past window events.
while event do

// Special case — see if Window closed.
if event.type is sf::Event::Closed then
GameManager setGameOver ()
return
end if

4.17.3.2 Catching Ctrl-C (optional)

In Linux and Mac, a common way to terminate a programming running in a terminal
window (also called a “shell’) is by holding down the control key and pressing ‘c’ (also
known as ctrl-c). Pressing ctrl-c actually sends a signal to the program that is currently
running — called a process — in the window. The signal is a simple form of communication

-
» 0%
N,
.
e\

\

w N

4.17. End Game (optional) 241

between the operating system and the process, basically signaling to the process that this
event (the ctrl-c) occurred.

Most programs interpret the ctrl-c as an indication to terminate — Dragonfly is no
exception and it will end when ctrl-c is pressed. However, by recognizing a signal, a
process has a chance to take some actions before being terminated. In particular, for
Dragonfly, this means it can call shutDown() for each Manager, closing the logfile and
reverting and settings back to standard mode before the process exits. Not responding to
ctrl-c in this way means that the process terminates abruptly, possibly leaving the system
in settings changed and leaving unwritten data that is still in memory out of the logfile.

The mechanism to “catch” ctrl-c is to setup a signal handler, giving a function name to
the operating system so that function can be called when a signal is passed to the process.
The specific system call to do this depends upon what operating system the process is
running on. On Linux, the system call is system(). For Windows, the system call is Set-
ConsoleCtrlHandler (). The general semantics are that when the signal occurs, the current
execution of the program is interrupted and the signal handler function is called. When the
signal handler finishes, the program resumes where it left off. In the case of Dragonfly, and
many other programs, the signal handler will terminate the process (via exit()) so it will
not return.

Note, if a process does not handle ctrl-c, which is the default behavior, the operating
system will terminate the process anyways — it is just that the process loses the opportunity
to gracefully shutdown. In fact, when a computer is shutdown, the operating system first
sends a ctrl-c signal to all processes, allowing them to shut themselves down. If they do
not terminate, it next sends a “kill” signal that forcibly shuts them down, a signal they
cannot handle.

First, the signal handler function is defined. Since the signal handler can be invoked from
anywhere, it cannot be a method of any class, but must be a global function. This could
suggest it be placed in utility.cpp, but since it only calls GameManager shutDown(), it
should be placed in GameManager.cpp. The definition is shown in Listing 4.228 where, as
stated earlier, the GameManager is shutdown and the process exits via the exit () system
call.

Listing 4.228: Function doShutDown() in GameManager.cpp

// Called ezxzplicitly to catch ctrl—c, so exit when done.
void doShutDown (int sig)

GameManager shutDown ()

exit (sig)

The second step is to tell the operating system to call the signal handler, doShutDown (),
when it receives a ctrl-c. This is done by adding code to startUp(), shown in List-
ing 4.229. A #include of signal.h is needed for the system calls. In startUp(), a variable
of type struct sigaction is created (here, named action) to hold the parameters for
the system call. In this case, the main parameter to specify is the name of the handler,
doShutDown. Note, doShutdown () must be defined above startUp() in GameManager.cpp
or a function prototype must appear before startUp() — not doing this will result in a
compiler error complaining about doShutDown () being undefined. The call sigemptyset ()
initializes the set of signals to empty, and setting sa flags to 0 indicates there are no spe-

-
» 0%
N,
.
e\

\

4.17. End Game (optional) 242

cial modifiers to the behavior when the signal comes. The final call, sigaction() enables
the signal, with the first parameter, SIGINT, referring to ctrl-c, the second the struct
sigaction data structure, and the third, NULL, indicating there is no interest in storing the
previous action. The call to sigaction() should be error checked as it returns -1 on error
and 0 on success.

Listing 4.229: GameManager extensions to support handling ctrl-c (Linux and Mac)

#include <signal.h>

// Startup all GameManager services.
int GameManager ::startUp ()

// Catch ctrl—C (SIGINT) and shutdown .

struct sigaction action

action.sa_handler = doShutDown // The signal handler.

sigemptyset (&action.sa_mask) // Clear signal set.

action.sa_flags = 0 // No special modification to behavior.
sigaction (SIGINT, &action, NULL) // Enable the handler.

Windows handles signals a bit differently with the system call SetConsoleCtrlHandler ()
taking the name of a general-purpose signal handler, where it matches the signal type to
CTRL_C_EVENT before calling GameManager shutDown (). Other signals that may be of in-
terest for Windows processes are CTRL_CLOSE_EVENT (the program is being closed), CTRL_~
LOGOFF_EVENT (the user is logging off), and CTRL_SHUTDOWN_EVENT (the operating system is
shutting down).

4.17.4 Random Numbers (optional)

Many games make frequent use of random numbers. For example, spins of a virtual roulette
wheel needs to bounce the ball randomly to different numbers each time; a maze generation
algorithm needs randomness to decide on how to carve twists and turns; or a computer
opponent needs some random behavior to make it difficult to figure out its next move.
Without randomness, the roulette wheel will always fall on the same number, the maze will
always be exactly the same, and the computer opponent will be boringly predictable.

However, true randomness is difficult for computers — after all, at their core, computers
are binary — either a 0 or a 1 and nothing in between. Instead, computers provide pseudo-
randomness by generating sequences of numbers that, to the eye (and to the game player)
look random. The most sophisticated of such algorithms even withstand external tests that
make it difficult to tell the sequences apart from true randomness. For example, consider
the sequence generated by:

Xpn = ((5x Xp—1)+ 1) mod 16 (4.1)

Assume X is 5. Then X7 = ((5 x 5) + 1) mod 16, or X; = 26 mod 16, or X; = 10. Doing
the same computation for n = 1,2, ... gives the numbers 10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8,
9, 14... It is difficult to look at this pattern and guess what number is next — to the eye
(and to the game player) it looks random. If the sequence was restarted, say, the next time

-
» 0%
N,
.
e\

\

4.17. End Game (optional) 243

a game was played, the sequence would be the same and the game player might then be
able to predict what number would come next having seen the sequence during the previous
game. Note, however, that the sequence generated totally depends upon the starting value
(X0). The starting value, also called the “seed” since it provides the basis for the sequence
that follows, can be changed each time the game is run to provide a different, unpredictable
sequence. Of course, being able to make the seed random would appear to put us back at
square one. However, a good “random” seed is to start the sequence based on the time of
day in seconds. Since each time the game is run the time will be different, thus providing
a different seed and, hence, a different random sequence.

Tip 23! Random seeds. For most games, players expect games have different
behavior each time they are run. Otherwise, for example, a bad guy might always
start by “turning right” in a maze game. Developers, however, mostly do not want
different behavior from run to run, particularly when debugging — note that “re-
producing the problem consistently” is the first step in debugging!® In such cases,
providing the same random seed provides the same not-so-random behavior, making
it easier to reproduce a game’s behavior from run to run. In addition, multiplayer
games, where separate computers may be computing “random” events, are often
started with the same random seed in order for all players to see the same behavior.

“See Section 5.1.1 on page 248 for details.

In order to make the “random” sequence easy to use, two functions are provided —
one to set the seed, and one to return the next number in the sequence. An example of
a rand () function to generate random numbers is shown in Listing 4.230. The variable
gmnext is declared globally since it needs to be maintained from call to call. By default,
g next is initialized to a value in seconds since 1970 (see time () described in Section 4.3.2
on page 56), a starting value that will seem random to the player and vary from game run
to game run. If the starting value (or actually at any time) needs to be explicitly controlled
by the programmer, the function srand () sets g next explicitly to the value seed.

Listing 4.230: Pseudo-random number functions

// Global wvariable to hold random number for sequence.
static unsigned long g_next = time ()

// Set seed to get a different starting point in sequence .
void srand(int seed)
g_next = seed

77 number.

// Generate ‘‘random
int rand ()

g_next = ((5 * g_next) + 1) mod 16

While aspiring programmers could research good random number generating algorithms
and code their own rand () and srand () functions, standard library functions already exist
that do a good job. Namely, srand() can be used set the seed and rand() can be used

-

- ,@;
e
.\

\

4.18. Development Checkpoint #15 — Dragonfiy! 244

to return the next random number in the sequence. The random function returns an
arbitrarily large integer, but typically a game programmer wants a random number bounded
to something smaller. For example, a dice roll would be in the range 1-6. In order to map,
say, rand () to the range 1-6, the game programmer calls (rand() % 6) + 1.

Dragonfly itself does not use rand (). Instead, all the engine needs to do is control the
seed, setting it to the time (in seconds) by default, while providing a means for the game
programmer to control the starting seed value when the engine starts up. This is done by
extending the GameManager startUp() in a couple of ways.

First, GameManager startUp() calls srand() with the time() call (e.g., srand(-
time (NULL))) in order to provide a random-looking starting point for the programmer
to make subsequent calls to rand (). GameManager . cpp needs to #include both <time.h>
and <stdlib.h> for the time () and rand(), srand () function calls, respectively.

Second, as shown in Listing 4.231, a new startUp() method is provided, this one
allowing the game programmer to set the seed explicitly (by calling srand(seed)).?? The
rest of the method is exactly the same as the normal GameManager startUp() method.

Listing 4.231: GameManager extension to support random seeds

o| public:
1 // Startup all GameManager services.
ol // seed = random seed (default is seed with system time).

int startUp(time_t seed=0) ;

4.18 Development Checkpoint #15 — Dragonfly!

(Optional)
Finish off your Dragonfly development!

1. Implement the doShutDown () function based on Listing 4.228. Test by having a game
object call doShutDown() explicitly and verify in the logfiles that the engine shuts
down properly.

2. Extend the GameManager to support handling closing the game window and ctrl-c
(Linux), following guidelines from Listing 4.227 and Listing 4.229, respectively. Be
sure to error as appropriate, writing informative errors to the logfile as needed. Test
with a simple “game” that does not terminate, but can be ended by closing and/or
ctrl-c. Verify these actions are actually caught via messages in the logfile.

3. Extend the GameManager to support random seeds, based on Listing 4.231. Test with
a simple “game” that generates random numbers. Verify that the numbers produced
are the same each run by using a fixed, explicit seed.

After completing the above steps (and all the previous Development Checkpoints), you
will have a fully functional, full featured game engine! Features include everything from
Dragonfly Naiad (Section 4.11 on page 150), plus:

22The type time_t is the type returned by time(), but can be thought of as an integer.

s

Ye

5
s

4.18.

Development Checkpoint #15 — Dragonfly! 245

Velocity support for game objects.

Objects with bounding boxes, enabling multi-character-sized objects.
Collisions for bounding boxes, not just single characters.

Objects with sprites, giving them animated frames.

Support for audio, including sound effects and music.

View objects for display elements, each with a value and HUD-type location.

Camera control for the game world, enabling “views” over a subset of the world with
explicit camera control and support for the camera following a specific object.

(Optional) Objects register for interest in events (e.g., step events), getting notification
for only those events.

(Optional) Scene graph support for more efficient queries.

(Optional) An inactive feature for game objects to temporarily not have the engine
act upon them.

(Optional) Invisible objects that are not drawn but otherwise interact with the world
normally.

(Optional) Ability to gracefully close the game through closing the window and/or
catching ctrl-c.

(Optional) Automatic random number seeding, with the ability of the game program-
mer to control initial seeds.

If implemented fully, including all the optional components, the Saucer Shoot game from
Chapter 3 should compile and run with your Dragonfly. Of course, that is just the start
— bigger and better games are waiting to be built using your engine! Or, your new found
engine knowledge is ready to be applied to learning a commercial engine or in a related
game development project.

Have fun!

s

* ol

8.}

5%

Ye

