/F .\ ' J7
PI0E—d NN _JI1TTT
Fid il IIJlIJIIJIIIIIII'JI

Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #2

Clock & GameManager

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 10.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2025 Mark Claypool and WPI. All rights reserved.

S S

4.4. Game Management 65

4.4 Game Management

At a high level, “managing the game” is the job description of the entire game engine.
Game programmers (and players) often think of this as “running the game”.

4.4.1 The Game Loop

The game manager “runs”’ the game, doing so by repeating the same basic set of actions
in a loop (the game loop), over and over. A 10,000 foot view of the game loop is presented
in Listing 4.14. Each iteration of the game loop is called a “step” (or a “tick”, as in the
tick of a clock). During one step, the game loop: 1) gets input, say from the keyboard or
the mouse (these are player actions in the game); 2) updates the game world state to move
objects around, generate needed actions, respond to the input; 3) draws a new image (the
current scene) on the graphics buffer; and 4) swaps out the old image for the new image.
This process is repeated in the loop until the game is over.

Listing 4.14: The game loop

while (game not over) do
Get input // e.g., from keyboard/mouse
Update game world state
Draw current scene to back buffer
Swap back buffer to current buffer
end while

Note that the loop in Listing 4.14 runs as fast as it can, updating and drawing the game
world as fast as the computer can get through the code. Early game development efforts
were often targeted for a machine with a specific speed, where the time to execute a loop
was known and objects could be moved an appropriate amount of time each loop. Of course,
running the same game code on a faster machine (as would happen when computer speeds
improved) meant the game would run faster! Moreover, if a step took more or less time
than expected, the update rate of game objects would vary, causing them to move faster or
slower.

In order to rectify this problem, the game loop is enhanced with loop timing information,
shown in Listing 4.15. In this version of the game loop, one step of the loop is expected to
take a fixed amount of time — a TARGET_TIME (e.g., 33 milliseconds). So, the time to execute
the first 4 instructions is carefully measured and, at the end of the loop on line 6, the game
is put to sleep (effectively, doing nothing) for whatever is remaining of the TARGET_TIME.

Listing 4.15: The game loop with timing

while (game not over) do
Get input // e.g., keyboard/mouse
Update game world state
Draw current scene to back buffer
Swap back buffer to current buffer
Measure loop_time // i.e., how long above steps took
Sleep for (TARGET_TIME - loop_time)
end while

s

Ye

5
s

4.4. Game Management 66

An important decision is how long TARGET TIME should be. Setting it too high will
result in the game loop progressing slowly, limiting animation rates and game update rates
— the game will look less “smooth” and will feel sluggish to the player. Setting it too
low will result in the game loop progressing rapidly, giving a smooth, responsive game,
but may unnecessarily burden the computer and cause problems, such as visual glitches or
unintended game slowdowns, if the game world is too complicated to be fully updated in
one step.

Guidelines for setting TARGET TIME can be drawn from video. Video performance is
often reported in units of frame rate, the rate at which video images are updated on the
screen. The units are typically frames per second (f/s). “Full motion” video, the rate seen
in movies or television, is approximately 30 f/s. Frame rates higher than this provides little
benefit to visual quality, while frame rates lower than this look “jerky” for some kinds of
video content. Considering the rendered game images as video images, the game loop rate
is analogous to video frame rates, provided guidance on the game loop rates. Notably, a
reasonable expectation is to update the game screen 30 times per second — equivalently,
setting TARGET_TIME to 33 milliseconds.

4.4.2 Measuring Computer Time

In order to step through the game loop 30 times per second, the time for one loop itera-
tion must be measured precisely. Modern operating systems provide several different ways
(system calls) to measure time. For example, on Unix systems, the time () call returns the
number of seconds since January 1st, 1970. Subsequent system calls can use that number
to extract the hours, minutes and seconds or even the month, day, year. However, the
resolution of the time () system call is only 1 second, meaning it is too coarse to provide
timing on the order of the milliseconds needed for the game loop.

Fortunately, modern computer processors have high-resolution timers provided by hard-
ware registers that count processor cycles, providing resolutions in the nanoseconds. For
instance, a 3 GHz processor increments the timer register 3 billion times per second, pro-
viding a resolution of 0.3 nanoseconds — plenty of precision for the game loop! The actual
system calls to access these high-resolution timers varies with platform. Windows uses
QueryPerformanceCounter () to get the timer value, and QueryPerformanceFrequency ()
to get the processor cycle rate. Xbox 360 and PS3 game consoles use the mftb (which
stands for “move from time base”) register to obtain the timer value, with the hardware
having a known processor cycle time. Linux uses clock_gettime () to get a high-resolution
time value (needing to be linked in with the real-time library, -1rt, when compiling).

In order to measure the time the game loop takes (everything between line 1 “Get input”
and line 4 “Swap” in Listing 4.15), the method in Listing 4.16 is used. The method starts
by recording the time (storing it in a variable). Next, the tasks to be timed are run (for a
game loop, this is input, update and so forth). When the tasks are done, the time is again
recorded. The elapsed time is obtained by subtracting the “before” time from the “after”
time.

Listing 4.16: Method to measure elapsed time

Record before time
Do processing stuff // e.g., get input, update

s

Ye

5
s

0(#include <Windows .h>

4.4. Game Management 67

Record after time
Compute elapsed time // after — before

For Linux, Listing 4.17 provides a code fragment to compute the elapsed time of a block
of computation. Note, in this example, the units for elapsed time are in microseconds,
which is often used for timing in game engines, but it could easily be adjusted to seconds
or milliseconds. For compilation, the system header file <time.h> is needed for the timing
routines and -1rt is needed to link in the real-time library. The timing function, clock_-
gettime (), fills in the components of a timespec structure, which includes fields for seconds
(tv_sec) and nanoseconds (tv_nsec). Computing elapsed time is done by converting the
seconds and nanoseconds to microseconds, and subtracting the initial value from the final
value.

Listing 4.17: Measuring elapsed time in Linux

#include <time.h> // Compile with —Irt

struct timespec before_ts, after_ts;

clock_gettime (CLOCK_REALTIME, &before_ts); // Start timing.
// Do stuff ...

clock_gettime (CLOCK_REALTIME, &after_ts); // Stop timing.

// Compute elapsed time in microseconds.

long int before_msec = before_ts.tv_sec*x1000000 + before_ts.tv_nsec/1000;
long int after_msec = after_ts.tv_sec*1000000 + after_ts.tv_nsec/1000;
long int elapsed_time = after_msec - before_msec;

For Mac, the system call clock_gettime() does not exist (nor does the rt library).
Instead, the system call gettimeofday() (located in <sys/time.h>) should be used, as
shown in Listing 4.18. A call to gettimeofday() fills a struct timeval with the number
of seconds and microseconds.

Listing 4.18: Measuring elapsed time in Mac OS

#include <sys/time.h>

struct timeval before_tv, after_tv;

gettimeofday (&before_tv, NULL); // Start timing.
// Do stuff ...

gettimeofday (&after_tv, NULL); // Stop timing.

// Compute elapsed time in microseconds.

long int before_msec = before_tv.tv_sec*1000000 + before_tv.tv_usec;
long int after_msec = after_tv.tv_sec*1000000 + after_tv.tv_usec;
long int elapsed_time = after_msec - before_msec;

For Windows, the system call needed is GetSystemTime () (located in <Windows.h>) is
used, as shown in Listing 4.19. A call to GetSystemTime () fills a SYSTEMTIME structure
with the number of minutes, seconds, and milliseconds.

Listing 4.19: Measuring elapsed time in Windows

wt

4.4. Game Management 68

SYSTEMTIME before_st, after_st;
GetSystemTime (&before_st) ;
// Do stuff ...

GetSystemTime (&after_st);

// Compute elapsed time in microseconds.

long int before_msec = (before_st.wDay * 24 x 60 * 60 * 1000000)
(before_st .wHour * 60 *x 60 * 1000000)
(before_st .wMinute * 60 * 1000000)
(before_st .wSecond * 1000000)
(before_st.wMilliseconds * 1000) ;

long int after_msec = (after_st.wDay * 24 x 60 * 60 * 1000000)
(after_st.wHour * 60 * 60 * 1000000)
(after_st.wMinute * 60 * 1000000)
(after_st.wSecond * 1000000)
(after_st.wMilliseconds * 1000) ;

long int elapsed_time = after_msec - before_msec;

+ o+ 4+ +

+ + + +

4.4.3 The Clock Class

It is helpful for both the game engine and the game programmer to have a class that provides
convenient access to high-resolution timing — the Clock class. Listing 4.20 provides the
header file for the Clock class.* The clock functions as a sort of “stopwatch”, so the time is
stored in the variable previous_time, initialized to the current time when a Clock object is
instantiated. A call to the method delta() returns the elapsed time (in microseconds) and
resets previous_time to the current time. A call to the method split () returns the time
(in microseconds) since the last delta() call, but does not change the value of previous_-
time. The constructor should set previous_time to the current time, and both delta()
and split() can be implemented using Listing 4.17, 4.18, or 4.19 (as appropriate to the
development platform), as a reference.

Listing 4.20: Clock.h
// The clock, for timing (such as in the game loop).

class Clock {

private:
long int m_previous_time; // Previous time delta () called (in microsec).

public:

// Sets previous_time to current time.

Clock () ;

// Return time elapsed since delta() was last called, —1 if error.

// Resets previous time.
// Units are microseconds .
long int delta();

// Return time elapsed since delta() was last called, —1 if error.

“Note, the conditional #ifdef directives described in Section 4.3.4 are not shown.

4.4. Game Management 69

=
~

// Does not reset previous time.
18] // Units are microseconds.

19 long int split() const;

20| };

With a Clock class for timing, the last missing piece for providing timing control in the
game loop is the ability to sleep (line 6 of Listing 4.15). Linux and Mac provide the sleep()
system call, but it has only seconds of resolution, meaning it will not allow the game engine
to sleep for, say, 20 milliseconds. Since game loop timing needs milliseconds of resolution,
so does an appropriate sleep call.

On Linux and Mac, high-resolution sleeping can be done with nanosleep () which sleeps
for a given number of nanoseconds.” A #include <time.h> is needed for nanosleep().
The system call nanosleep() takes in a pointer to a struct timespec that has the
amount of seconds plus nanoseconds to sleep. The example in Listing 4.21 shows a call
to nanosleep() for 20 milliseconds.

Listing 4.21: nanosleep() example for Linux and Mac
// Sleep for 20 milliseconds .
struct timespec sleep_time;
sleep_time.tv_sec = O0;
sleep_time.tv_nsec = 20000000;
nanosleep (&sleep_time, NULL);

On Windows, sleeping can be done with Sleep() which sleeps for a given number
of milliseconds. A #include <Windows.h> is needed for Sleep(). In order to obtain a
millisecond resolution using Sleep(), the system call timeBeginPeriod(1) needs to be
called once, when the game engine starts, to set the timer resolution to the minimum
possible. The system call timeEndPeriod(1) is called when the game engine exits to clear
the initial request for a minimal timer resolution. Both functions return TIMERR_NOERROR
if successful or TIMERR_NOCANDO if the resolution specified is out of range. Note, the best
places for these calls are when the GameManager starts up and when the GameManager
shuts down, respectively (see Section 4.4.4 on page 71). This functions must be linked in
via the Winmm.1ib library.

Listing 4.22: Sleep() example for Windows
// Sleep for 20 milliseconds .

int sleep_time = 20;
Sleep(sleep_time) ;

= O

N

Listing 4.23 provides pseudo-code for how the Clock class and sleep functions can be
used together in the game loop. The call to clock.delta() at the beginning of the loop
starts the timing, while the call to clock.split () after most of the loop body provides the
elapsed time, measuring how long the game loop took. The game engine then sleeps (via
nanosleep() for Linux or Mac or Sleep() for Windows) for TARGET_TIME - loop_time.

Listing 4.23: The game loop with Clock
()(Clock clock 1

5There are 1 billion nanoseconds in 1 second.

s

Ye

5
s

4.4. Game Management 70

while (game not over) do
clock.delta()

Get input // e.g., keyboard/mouse

Update game world state

Draw current scene to back buffer

Swap back buffer to current buffer

loop_time = clock.split()
sleep (TARGET_TIME - loop_time)
end while

The expectation is that (TARGET_TIME - loop_time) is positive, since the sleep() call
on line 10 of Listing 4.23 expects positive number. But what happens when it is not? First
off, consider what it means for (TARGET TIME - loop_time) to be negative. This happens
when the time to do the processing work in the game loop (the input, update, draw and
swap) takes longer than the expected time for one iteration of the game loop (longer than
TARGET_TIME). When this happens, the game engine cannot keep up with the work required
to run the game, resulting, at a minimum, in the displayed frame rate that the player sees
to decrease. For example, if the TARGET_TIME is 33 milliseconds, providing a frame rate
of 30 f/s, but the loop time (loop_time) takes 50 milliseconds, the frame rate is only 20
f/s. With longer loop times, the frame rate drops further, decreasing the smoothness of the
visual display for the player. The time between getting input from the player also decreases,
probably making the game feel less responsive.

If the loop_time is greater than the TARGET_TIME, do the game objects themselves need
to slow down also? Not necessarily. When updating the game world, the engine can be
aware of the previous update time, thus knowing how much time has elapsed, and use this
to decide how far, say, an object should move. The game engine could pass along timing
information to update functions and for those functions to use the information accordingly.

For example, in the Saucer Shoot tutorial (Chapter 3), the Hero decrements a counter
each step to restrict the rate of fire. If the goal was to keep the rate of fire consistent with
the real-world time (e.g., fire one bullet every second), then the game code could use the
elapsed time as in the following listing:

0[fire_countdown -= ceil (elapsed_time / TARGET_TIME)]

This would decrease the fire_countdown value by more than 1 each step when the
elapsed time (elapsed_time) was greater than the target loop time (TARGET_TIME).

However, in Dragonfly, the engine does not do this, so if the computer cannot keep
up at the expected TARGET_TIME pace, the game will look, feel and run slower. Thus, as
for programming all games using a game engine, Dragonfly game programmers must work
within the constraints of the engine to ensure the load their game places on the engine does
not cause performance issues.

4.4.3.1 Fine Tuning the Game Loop (optional)

A subtle timing aspect that is important for some games is that when calling operating
system sleep functions (e.g., nanosleep() or Sleep()), the actual amount of sleep time may
be longer than requested depending upon other activity in the system and the operating

“fe,

\

4.4. Game Management 71

system scheduler. In most cases, this does not matter much, since sleep differences are
typically being only a matter of a few milliseconds at most. However, in some cases, such as
when trying to synchronize game state on two different machines in a multi-player game or
when tying to keep game time consistent with real-world time (i.e., external clocks), more
precision in the total time a game loop takes is required.

If so, a final adjustment to the loop timing can be made by determining how long the
sleep function call actually took. Measurement can be done before and after the sleep call,
with any extra time subtracted from the next game loop. Listing 4.24 shows how to put in
this adjustment.

Listing 4.24: The game loop with Clock and sleep adjustment

Clock clock
while (game not over) do
clock.delta()

Get input // e.g., keyboard/mouse

Update game world state

Draw current scene to back buffer

Swap back buffer to current buffer

loop_time = clock.split()

intended_sleep_time = TARGET_TIME - loop_time - adjust_time
clock.delta()

sleep(intended_sleep_time)

actual_sleep_time = clock.split ()
adjust_time = actual_sleep_time - intended_sleep_time
if adjust_time < O then
set adjust_time to O
end if

end while

4.4.4 The GameManager

With timing technologies developed for the game loop, implementation of the GameManager
can now be started with the class definition provided in Listing 4.25.

The GameManager constructor should set the type of the Manager to “GameManager”
(i.e., setType ("GameManager") and initialize all attributes.

The method setGameOver () lets the game programmer set the game over condition
when ready (e.g., the player has indicated they want to quit) and getGameOver () returns
the game over status.

The run() method is used to start the game, effectively running the game loop until
the game is over, controlled by the boolean attribute game_over.

The GameManager needs start up methods, like all engine managers. The GameMana-
ger startUp () method instantiates (via getInstance()) and starts up (via startUp()) all
the other game managers and in the right order. For now, the GameManager only starts
up the LogManager. The game_over variable should be set to false. Most games typically
use the default of 33 milliseconds (line 3), but games that want to run faster or slower may

o,

\

16

19

4.4. Game Management 72

want to use an alternate frame time.” If developing for Windows, GameManager startUp ()
should invoke timeBeginPeriod (1) (see page 69).

The shutDown() method does the reverse, shutting down the LogManager. It calls
setGameOver () to indicate to any game objects that the game is over, which sets the
game_over variable to true. If developing for Windows, GameManager shutDown () should
invoke timeEndPeriod (1) (see page 69).

Upon success, Manager startUp() and Manager shutDown() should be called from
GameManager startUp() and GameManager shutDown (), respectively.

Listing 4.25: GameManager.h

#include " Manager.h"

// Default frame time (game loop time) in milliseconds (83 ms == 80 f/s).
const int FRAME_TIME_DEFAULT = 33;

class GameManager : public Manager {
private:
GameManager () ; // Private since a singleton.
GameManager (GameManager const&); // Don’t allow copy.
void operator=(GameManager const&); // Don’t allow assignment.
bool game_over; // True, then game loop should stop.
int frame_time; // Target time per game loop, in milliseconds .
public:

// Get the singleton instance of the GameManager .
static GameManager &getInstance ();

// Startup all GameManager services .
int startUp();

// Shut down GameManager services.
void shutDown () ;

// Run game loop .
void run() ;

// Set game over status to indicated value.
// If true (default), will stop game loop .
void setGameOver (bool new_game_over=true) ;

// Get game over status.
bool getGameOver () const;

// Return frame time.
// Frame time is target time for game loop, in milliseconds .
int getFrameTime () const;

g

* Did you know (#3)7 Large dragonflies have an average cruising speed of about 10 mph, with a
maximum speed of about 30 mph. — “Frequently Asked Questions about Dragonflies”, British Dragonfly
Society, 2013.

4.4. Game Management

73

Tip 8! Acronyms for Dragonfly managers. Comparing Listing 4.25 with the
full GameManager.h header file available online will show an extra line:

#define GM df::GameManager::getInstance()

This allows programmers, both game engine programmers and game
programmers, to access the GameManager singleton via GM. For ex-
ample, a game programmer could write GM.setGameOver() instead of
df : :GameMangager: :getInstance() .setGameOver (). The full version of Dragon-
fly has similar code in the header file for each manager: “GM” for GameManager,
“LM” for LogManager, “RM” for ResourceManager, “IM” for InputManager,
“DM” for DisplayManager, and “WM” for WorldManager. While such blanket
syntax replacement should be used sparingly (remember, #define directives are
handled by the pre-processor during compilation), in this case the ability to use the
two-letter acronym for the singleton managers makes coding more convenient and

code more readable. (Note, there is no semi-colon at the end of the above line.)

4.4.5 Development Checkpoint #2!

If you have not kept up already, Dragonfly development should continue! Steps:

1.

Create the Clock class. Create a Clock.h header file based on Listing 4.20. Add
Clock.cpp to the project and stub out each method so it compiles.

Implement and test, using a simple program that creates a Clock object, waits for
awhile (use an appropriate sleep call), and calls split() and/or delta(). Verify
the times meet expectations. A robust LogManager (developed during Development
Checkpoint 4.3.7) can be used for output.

. Create the GameManager class. Create a GameManager.h header file based on List-

ing 4.25. Add GameManager.cpp and stub out each method so it compiles.

. In the GameManager . cpp file, have the startUp () method start the LogManager, and

the shutDown() method stop the LogManager and call setGameOver (). Test that
startUp() and shutDown () work as expected before proceeding.

. Implement the game loop inside the GameManager run() method. The body of the

loop does not do anything yet (although you can add some “dummy” statements),
but the loop should time (via delta() and split()) and sleep properly. Be sure to
double-check any conversions of units (e.g., milliseconds to microseconds) used. The
game loop uses a Clock object. Test thoroughly by timing (with a clock on the wall)
that you get the expected number of loop iterations.

. Add additional functionality to the GameManager, as desired. The frame time option

to startUp() can be useful.

-

- ,@;
e
* 0\

4.4. Game Management 74

Since code developed during this Development Checkpoint drives the entire game, it
should be tested thoroughly, making sure it is robust and clearly written before proceeding.

Tip 9! Measuring elapsed time from a shell. From a command shell, such
as a Bash shell in Linux and the Power Shell in Windows, the Linux time utility
and the Measure-Command utility can be used to measure the elapsed time for a
running program. For example, in a Linux Bash shell the command would be
time a.out and in Windows Power Shell the command would be Measure-Command
myprogram.exe. S0, for example, having a game loop iterate 100 times and then
exit can be timed via a command shell to verify it takes 3.3 seconds.

‘«:’{.,

